全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Human Sprouty1 Suppresses Urokinase Receptor-Stimulated Cell Migration and Invasion

DOI: 10.1155/2013/598251

Full-Text   Cite this paper   Add to My Lib

Abstract:

The urokinase-type plasminogen activator receptor (uPAR) has been implicated in several processes in tumor progression including cell migration and invasion in addition to initiation of signal transduction. Since uPAR lacks a transmembrane domain, it uses the interaction with other proteins to modulate intracellular signal transduction. We have previously identified hSpry1 as a partner protein of uPAR, suggesting a physiological role for hSpry1 in the regulation of uPAR signal transduction. In this study, hSpry1 was found to colocalize with uPAR upon stimulation with epidermal growth factor (EGF), urokinase (uPA), or its amino terminal fragment (uPA-ATF), implicating a physiological role of hSpry1 in regulation of uPAR signalling pathway. Moreover, hSpry1 was able to inhibit uPAR-stimulated cell migration in HEK293/uPAR, breast carcinoma, and colorectal carcinoma cells. In addition, hSpry1 was found to inhibit uPAR-stimulated cell invasion in breast carcinoma and osteosarcoma cell lines. Increasing our understanding of how hSpry1 negatively regulates uPAR-stimulated cellular functions may determine a distinctive role for hSpry1 in tumour suppression. 1. Introduction The serine protease urokinase-type plasminogen activator (uPA) receptor (uPAR) has been implicated in extracellular matrix (ECM) proteolysis, initiation of signal transduction, and important cell functions including migration and invasion [1]. The active uPA consists of catalytic protease domain and the uPA amino terminal fragment (uPA-ATF) [2]. uPA-ATF contains the kringle domain and the growth factor-like domain (GFD) that contains the binding sequence for the receptor [2]. The uPAR protein has been shown to engage in multiple protein-protein interactions with other proteins such as vitronectin, integrins, and Mrj [3–5]. Sprouty (Spry) proteins have been identified as inhibitors of the receptor tyrosine kinase (RTK) including (epidermal growth factor receptor) EGFR [6]. The mammalian genome contains four SPRY genes (SPRY 1–4) encoding proteins with a conserved cysteine-rich region at the carboxyl terminus [7]. Due to its central role in Ras/MAP kinase pathway, SPRY may act as a putative tumor suppressor gene, and that loss of expression or function may allow the cell to be hypersensitive to growth signals [8]. Interestingly, the tumor suppressor gene, WT1, has been found to bind with SPRY1 promoter and regulate it during kidney development [9]. Prostate ductal hyperplasia and low-grade prostatic intraepithelial neoplasia (PIN) have been observed in adult mouse with concomitant Spry1 and

References

[1]  A. H. Mekkawy, D. L. Morris, and M. H. Pourgholami, “Urokinase plasminogen activator system as a potential target for cancer therapy,” Future Oncology, vol. 5, no. 9, pp. 1487–1499, 2009.
[2]  V. V. Stepanova and V. A. Tkachuk, “Urokinase as a multidomain protein and polyfunctional cell regulator,” Biochemistry, vol. 67, no. 1, pp. 109–118, 2002.
[3]  P. Chaurasia, J. A. Aguirre-Ghiso, O. D. Liang, H. Gardsvoll, M. Ploug, and L. Ossowski, “A region in urokinase plasminogen receptor domain III controlling a functional association with α5β1 integrin and tumor growth,” Journal of Biological Chemistry, vol. 281, no. 21, pp. 14852–14863, 2006.
[4]  C. E. De Bock, Z. Lin, A. H. Mekkawy, J. A. Byrne, and Y. Wang, “Interaction between urokinase receptor and heat shock protein MRJ enhances cell adhesion,” International Journal of Oncology, vol. 36, no. 5, pp. 1155–1163, 2010.
[5]  S. M. Kanse, T. Chavakis, N. Al-Fakhri, K. Hersemeyer, D. Monard, and K. T. Preissner, “Reciprocal regulation of urokinase receptor (CD87)-mediated cell adhesion by plasminogen activator inhibitor-1 and protease nexin-1,” Journal of Cell Science, vol. 117, no. 3, pp. 477–485, 2004.
[6]  T. Casci, J. Vinós, and M. Freeman, “Sprouty, an intracellular inhibitor of Ras signaling,” Cell, vol. 96, no. 5, pp. 655–665, 1999.
[7]  J. D. Tefft, L. Matt, S. Smith et al., “Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis,” Current Biology, vol. 9, no. 4, pp. 219–222, 1999.
[8]  T. L. Lo, P. Yusoff, C. W. Fong et al., “The Ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer,” Cancer Research, vol. 64, no. 17, pp. 6127–6136, 2004.
[9]  I. Gross, D. J. Morrison, D. P. Hyink et al., “The receptor tyrosine kinase regulator sproutyl is a target of the tumor suppressor WT1 and important for kidney development,” Journal of Biological Chemistry, vol. 278, no. 42, pp. 41420–41430, 2003.
[10]  J. L. Schutzman and G. R. Martin, “Sprouty genes function in suppression of prostate tumorigenesis,” Proceedings of the National Academy of Sciences of USA, vol. 109, no. 49, pp. 20023–20028, 2012.
[11]  S. Fritzsche, M. Kenzelmann, M. J. Hoffmann et al., “Concomitant down-regulation of SPRY1 and SPRY2 in prostate carcinoma,” Endocrine-Related Cancer, vol. 13, no. 3, pp. 839–849, 2006.
[12]  B. Kwabi-Addo, J. Wang, H. Erdem et al., “The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer,” Cancer Research, vol. 64, no. 14, pp. 4728–4735, 2004.
[13]  B. S. Taylor, N. Schultz, H. Hieronymus et al., “Integrative genomic profiling of human prostate cancer,” Cancer Cell, vol. 18, no. 1, pp. 11–22, 2010.
[14]  G. Schaaf, M. Hamdi, D. Zwijnenburg et al., “Silencing of SPRY1 triggers complete regression of rhabdomyosarcoma tumors carrying a mutated RAS gene,” Cancer Research, vol. 70, no. 2, pp. 762–771, 2010.
[15]  A. H. Mekkawy, C. E. De Bock, Z. Lin, D. L. Morris, Y. Wang, and M. H. Pourgholami, “Novel protein interactors of urokinase-type plasminogen activator receptor,” Biochemical and Biophysical Research Communications, vol. 399, no. 4, pp. 738–743, 2010.
[16]  A. H. Mekkawy, D. L. Morris, and M. H. Pourgholami, “HAX1 augments cell proliferation, migration, adhesion, and invasion induced by urokinase-type plasminogen activator receptor,” Journal of Oncology, vol. 2012, Article ID 950749, 9 pages, 2012.
[17]  S. M. Carlin, T. J. Resink, M. Tamm, and M. Roth, “Urokinase signal transduction and its role in cell migration,” FASEB Journal, vol. 19, no. 2, pp. 195–202, 2005.
[18]  A. Stahl and B. M. Mueller, “Binding of urokinase to its receptor promotes migration and invasion of human melanoma cells in vitro,” Cancer Research, vol. 54, no. 11, pp. 3066–3071, 1994.
[19]  H. T. Myohanen, R. W. Stephens, K. Hedman et al., “Distribution and lateral mobility of the urokinase-receptor complex at the cell surface,” Journal of Histochemistry and Cytochemistry, vol. 41, no. 9, pp. 1291–1301, 1993.
[20]  P. Llinas, M. H. Le Du, H. G?rdswoll et al., “Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide,” EMBO Journal, vol. 24, no. 9, pp. 1655–1663, 2005.
[21]  J. Bohuslav, V. Ho?ej?í, C. Hansmann et al., “Urokinase plasminogen activator receptor, β2-integrins, and Src-kinases within a single receptor complex of human monocytes,” Journal of Experimental Medicine, vol. 181, no. 4, pp. 1381–1390, 1995.
[22]  Y. Wei, M. Lukashev, D. I. Simon et al., “Regulation of integrin function by the urokinase receptor,” Science, vol. 273, no. 5281, pp. 1551–1555, 1996.
[23]  W. Xue, I. Mizukami, R. F. Todd III, and H. R. Petty, “Urokinase-type plasminogen activator receptors associate with β1 and β3 integrins of fibrosarcoma cells: dependence on extracellular matrix components,” Cancer Research, vol. 57, no. 9, pp. 1682–1689, 1997.
[24]  M. Resnati, I. Pallavicini, R. Daverio, N. Sidenius, P. Bonini, and F. Blasi, “Specific immunofluorimetric assay detecting the chemotactic epitope of the urokinase receptor (uPAR),” Journal of Immunological Methods, vol. 308, no. 1-2, pp. 192–202, 2006.
[25]  D. Liu, J. A. Aguirre Ghiso, Y. Estrada, and L. Ossowski, “EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma,” Cancer Cell, vol. 1, no. 5, pp. 445–457, 2002.
[26]  J. M. Mason, D. J. Morrison, B. Bassit et al., “Tyrosine phosphorylation of sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop,” Molecular Biology of the Cell, vol. 15, no. 5, pp. 2176–2188, 2004.
[27]  M.-A. Impagnatiello, S. Weitzer, G. Gannon, A. Compagni, M. Cotten, and G. Christofori, “Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells,” Journal of Cell Biology, vol. 152, no. 5, pp. 1087–1098, 2001.
[28]  H. Hanafusa, S. Torii, T. Yasunaga, and E. Nishida, “Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway,” Nature Cell Biology, vol. 4, no. 11, pp. 850–858, 2002.
[29]  W. Schwab, J. M. Gavlik, T. Beichler et al., “Expression of the urokinase-type plasminogen activator receptor in human articular chondrocytes: association with caveolin and β1-integrin,” Histochemistry and Cell Biology, vol. 115, no. 4, pp. 317–323, 2001.
[30]  A. Stahl and B. M. Mueller, “The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae,” Journal of Cell Biology, vol. 129, no. 2, pp. 335–344, 1995.
[31]  W. Ying, X. Yang, L. Qiumei, J. A. Wilkins, and H. A. Chapman, “A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling,” Journal of Cell Biology, vol. 144, no. 6, pp. 1285–1294, 1999.
[32]  C.-H. Tang, M. L. Hill, A. N. Brumwell, H. A. Chapman, and Y. Wei, “Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with β1 integrins,” Journal of Cell Science, vol. 121, no. 22, pp. 3747–3758, 2008.
[33]  M. Jo, K. S. Thomas, D. M. O'Donnell, and S. L. Gonias, “Epidermal growth factor receptor-dependent and -independent cell-signaling pathways originating from the urokinase receptor,” Journal of Biological Chemistry, vol. 278, no. 3, pp. 1642–1646, 2003.
[34]  S. K. Repertinger, E. Campagnaro, J. Fuhrman, T. El-Abaseri, S. H. Yuspa, and L. A. Hansen, “EGFR enhances early healing after cutaneous incisional wounding,” Journal of Investigative Dermatology, vol. 123, no. 5, pp. 982–989, 2004.
[35]  A. Mamoune, J. Kassis, S. Kharait et al., “DU145 human prostate carcinoma invasiveness is modulated by urokinase receptor (uPAR) downstream of epidermal growth factor receptor (EGFR) signaling,” Experimental Cell Research, vol. 299, no. 1, pp. 91–100, 2004.
[36]  C. Festuccia, A. Angelucci, G. L. Gravina et al., “Epidermal growth factor modulates prostate cancer cell invasiveness regulating urokinase-type plasminogen activator activity. EGF-receptor inhibition may prevent tumor cell dissemination,” Thrombosis and Haemostasis, vol. 93, no. 5, pp. 964–975, 2005.
[37]  T. Shiratsuchi, H. Ishibashi, and K. Shirasuna, “Inhibition of epidermal growth factor-induced invasion by dexamethasone and AP-1 decoy in human squamous cell carcinoma cell lines,” Journal of Cellular Physiology, vol. 193, no. 3, pp. 340–348, 2002.
[38]  A. ünlü and R. E. Leake, “The effect of EGFR-related tyrosine kinase activity inhibition on the growth and invasion mechanisms of prostate carcinoma cell lines,” International Journal of Biological Markers, vol. 18, no. 2, pp. 139–146, 2003.
[39]  G. H. Mahabeleshwar, R. Das, and G. C. Kundu, “Tyrosine kinase, p56lck-induced cell motility, and urokinase-type plasminogen activator secretion involve activation of epidermal growth factor receptor/extracellular signal regulated kinase pathways,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 9733–9742, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133