Production of Alkaline Protease by Solvent-Tolerant Alkaliphilic Bacillus circulans MTCC 7942 Isolated from Hydrocarbon Contaminated Habitat: Process Parameters Optimization
In the present investigation, a newly isolated organic solvent-tolerant and alkaliphilic bacterial strain was reported from a hydrocarbon (gasoline and diesel) contaminated soil collected from the petrol station, Shirpur (India). The strain was identified as Bacillus circulans MTCC 7942, based on phenotype, biochemical, and phylogenetic analysis of 16S rRNA gene sequence. The capability of Bacillus circulans to secrete an extracellular, thermostable, alkaline protease and grow in the presence of organic solvents was explored. Bacillus circulans produced maximum alkaline protease (412?U/mL) in optimized medium (g/L): soybean meal, 15; starch, 10; KH2PO4, 1; MgSO4·7H2O, 0.05; CaCl2, 1; Na2CO3, 8; pH 10.0 at 37°C and 100?rpm. The competence of strain to grow in various organic solvents—n-octane, dodecane, n-decane, N,N-dimethylformamide, n-hexane, and dimethyl sulfoxide, establishes its potential as solvent-stable protease source for the possible applications in nonaqueous reactions and fine chemical synthesis. 1. Introduction The world enzyme market will grow up to $2.1 billion by 2016 [1]. Of these, alkaline protease alone accounts for 40% of the total world enzyme production, with growing applications in bakery, brewing, detergent, diagnostic reagents, feeds modification, leather finishing, laundry additives, pharmaceuticals, peptide synthesis, silk, silver recovery from X-ray/photographic film, soy processing, and waste treatment [2]. Majority of alkaline proteases produced by mesophilic microbes are effective in a narrow range of pH, temperature, and ionic strength, accordingly unsuitable for commercial purpose under demanding industrial conditions. Hence, alkaline proteases secreted by alkaliphilic bacteria are of potential interest in detergent industry due to their ability to withstand extremes of temperature (40–60°C), alkaline pH (9–11), high salt concentration, and other harsh conditions [3]. Alkaline protease that catalyses peptide bond formation in the nonaqueous media has greatly expanded potentials in green chemistry for fine chemical synthesis [4]. Alkaline proteases have expanded new possibilities such as (i) shifting of thermodynamic reaction equilibrium to favour synthesis, (ii) enhancement of bioavailability of hydrophobic substrates, (iii) total inhibition of water-dependent side reactions, (iv) alteration in enantioselectivity of reaction, (v) improving thermal stability, and (vi) facilitating the product recovery. Thus, the stability of proteases in organic solvents offers certain merits like (i) synthesis of various compounds, (ii)
References
[1]
Marketwire, 2012, http://www.marketwired.com/.
[2]
R. Gupta, Q. Beg, and P. Lorenz, “Bacterial alkaline proteases: molecular approaches and industrial applications,” Applied Microbiology and Biotechnology, vol. 59, no. 1, pp. 15–32, 2002.
[3]
J. Eichler, “Biotechnological uses of archaeal extremozymes,” Biotechnology Advances, vol. 19, no. 4, pp. 261–278, 2001.
[4]
F. Bordusa, “Proteases in organic synthesis,” Chemical Reviews, vol. 102, no. 12, pp. 4817–4867, 2002.
[5]
M. N. Gupta and I. Roy, “Enzymes in organic media: forms, functions and applications,” European Journal of Biochemistry, vol. 271, no. 13, pp. 2575–2583, 2004.
[6]
H. J. Heipieper, G. Neumann, S. Cornelissen, and F. Meinhardt, “Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems,” Applied Microbiology and Biotechnology, vol. 74, no. 5, pp. 961–973, 2007.
[7]
A. Gupta and S. K. Khare, “A protease stable in organic solvents from solvent tolerant strain of Pseudomonas aeruginosa,” Bioresource Technology, vol. 97, no. 15, pp. 1788–1793, 2006.
[8]
R. N. Z. R. A. Rahman, S. Mahamad, A. B. Salleh, and M. Basri, “A new organic solvent tolerant protease from Bacillus pumilus 115b,” Journal of Industrial Microbiology and Biotechnology, vol. 34, no. 7, pp. 509–517, 2007.
[9]
K. K. Doddapaneni, R. Tatineni, R. N. Vellanki et al., “Purification and characterization of a solvent and detergent-stable novel protease from Bacillus cereus,” Microbiological Research, vol. 164, no. 4, pp. 383–390, 2009.
[10]
U. Patil and A. Chaudhari, “Optimal production of alkaline protease from solvent-tolerant alkalophilic Pseudomonas aeruginosa MTCC 7926,” Indian Journal of Biotechnology, vol. 10, no. 3, pp. 329–339, 2011.
[11]
A. Badoei-Dalfard and Z. Karami, “Screening and isolation of an organic solvent tolerant-protease from Bacillus sp. JER02: activity optimization by response surface methodology,” Journal of Molecular Catalysis B, vol. 89, no. 2, pp. 15–23, 2013.
[12]
J. Sambrook, E. Fritsch, and T. Maniatis, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, New York, NY, USA, 2nd edition, 1989.
[13]
H. Ogino, K. Yasui, T. Shiotani, T. Ishihara, and H. Ishikawa, “Organic solvent-tolerant bacterium which secretes an organic solvent- stable proteolytic enzyme,” Applied and Environmental Microbiology, vol. 61, no. 12, pp. 4258–4262, 1995.
[14]
T. Nakanishi, Y. Matsumura, N. Minamiura, and T. Yamamoto, “Action and specificity of Streptomyes alkalophilic proteinase,” Agricultural and Biological Chemistry, vol. 38, no. 1, pp. 37–44, 1974.
[15]
O. Lowry, N. Rosebrough, V. Farr, and R. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[16]
V. Riis, D. Miethe, and W. Babel, “Degradation of refinery products and oils from polluted sites by the autochthonous microorganisms of contaminated and pristine soils,” Microbiological Research, vol. 150, no. 3, pp. 323–330, 1995.
[17]
J. Wyszkowska and J. Kucharski, “Correlation between number of microbes and degree of soil contamination by petrol,” Polish Journal of Environmental Studies, vol. 10, no. 3, pp. 175–181, 2001.
[18]
C. J. Hun, R. N. Z. A. Rahman, A. B. Salleh, and M. Basri, “A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase,” Biochemical Engineering Journal, vol. 15, no. 2, pp. 147–151, 2003.
[19]
A. Gupta, I. Roy, S. K. Khare, and M. N. Gupta, “Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA,” Journal of Chromatography A, vol. 1069, no. 2, pp. 155–161, 2005.
[20]
R. N. Z. A. Rahman, L. P. Geok, M. Basri, and A. B. Salleh, “Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K,” Bioresource Technology, vol. 96, no. 4, pp. 429–436, 2005.
[21]
U. Patil and A. Chaudhari, “Purification and characterization of solvent-tolerant, thermostable, alkaline metalloprotease from alkalophilic Pseudomonas aeruginosa MTCC 7926,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 9, pp. 1255–1262, 2009.
[22]
S. Isken, A. Derks, P. F. G. Wolffs, and J. A. M. De Bont, “Effect of organic solvents on the yield of solvent-tolerant Pseudomonas putida S12,” Applied and Environmental Microbiology, vol. 65, no. 6, pp. 2631–2635, 1999.
[23]
Y. N. Sardessai and S. Bhosle, “Industrial potential of organic solvent tolerant bacteria,” Biotechnology Progress, vol. 20, no. 3, pp. 655–660, 2004.
[24]
H. Shimogaki, K. Takeuchi, T. Nishino et al., “Purification and properties of a novel surface-active agent- and alkaline-resistant protease from Bacillus sp. Y,” Agricultural and Biological Chemistry, vol. 55, no. 9, pp. 2251–2258, 1991.
[25]
R. Sareen and P. Mishra, “Purification and characterization of organic solvent stable protease from Bacillus licheniformis RSP-09-37,” Applied Microbiology and Biotechnology, vol. 79, no. 3, pp. 399–405, 2008.
[26]
W. Fang, J. Feng, Y. Fan et al., “Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana,” Journal of Invertebrate Pathology, vol. 102, no. 2, pp. 155–159, 2009.
[27]
S. Sen and T. Satyanarayana, “Optimization of alkaline protease production by thermophilic Bacillus licheniformis S-40,” Indian Journal of Microbiology, vol. 33, no. 1, pp. 43–47, 1993.
[28]
H.-S. Joo, C. G. Kumar, G.-C. Park, K. T. Kim, S. R. Paik, and C.-S. Chang, “Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii,” Process Biochemistry, vol. 38, no. 2, pp. 155–159, 2002.
[29]
Y. Takii, N. Kuriyama, and Y. Suzuki, “Alkaline serine protease produced from citric acid by Bacillus alcalophilus subsp. halodurans KP 1239,” Applied Microbiology and Biotechnology, vol. 34, no. 1, pp. 57–62, 1990.
[30]
N. Fujiwara, K. Yamamoto, and A. Masui, “Utilization of a thermostable alkaline protease from an alkalophilic thermophile for the recovery of silver from used X-ray film,” Journal of Fermentation and Bioengineering, vol. 72, no. 4, pp. 306–308, 1991.
[31]
A. Gessesse, R. Hatti-Kaul, B. A. Gashe, and B. Mattiasson, “Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather,” Enzyme and Microbial Technology, vol. 32, no. 5, pp. 519–524, 2003.
[32]
A. Gessesse, “The use of nug meal as a low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme,” Bioresource Technology, vol. 62, no. 1-2, pp. 59–61, 1997.
[33]
S. S. Mabrouk, A. M. Hashem, N. M. A. El-Shayeb, A.-M. S. Ismail, and A. F. Abdel-Fattah, “Optimization of alkaline protease productivity by Bacillus licheniformis ATCC 21415,” Bioresource Technology, vol. 69, no. 2, pp. 155–159, 1999.
[34]
S.-H. Moon and S. J. Parulekar, “A parametric study of protease production in batch and fed-batch cultures of Bacillus firmus,” Biotechnology and Bioengineering, vol. 37, no. 5, pp. 467–483, 1991.
[35]
W. Mao, R. Pan, and D. Freedman, “High production of alkaline protease by Bacillus licheniformis in a fed-batch fermentation using a synthetic medium,” Journal of Industrial Microbiology, vol. 11, no. 1, pp. 1–6, 1992.
[36]
U. Hubner, U. Bock, and K. Schugerl, “Production of alkaline serine protease subtilisin Carlsberg by Bacillus licheniformis on complex medium in a stirred tank reactor,” Applied Microbiology and Biotechnology, vol. 40, no. 2-3, pp. 182–188, 1993.
[37]
S. Phadatare, M. C. Srinivasan, and M. Deshpande, “Evidence for the involvement of serine protease in the conidial discharge of Conidiobolus coronatus,” Archives of Microbiology, vol. 153, no. 1, pp. 47–49, 1989.
[38]
H.-S. Joo and C.-S. Chang, “Production of an oxidant and SDS-stable alkaline protease from an alkaophilic Bacillus clausii I-52 by submerged fermentation: feasibility as a laundry detergent additive,” Enzyme and Microbial Technology, vol. 38, no. 1-2, pp. 176–183, 2006.
[39]
K. Horikoshi and T. Akiba, Alkalophilic Microorganisms: A New Microbial World, Springer, Berlin, Germany, 1982.
[40]
H. Genckal and C. Tari, “Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats,” Enzyme and Microbial Technology, vol. 39, no. 4, pp. 703–710, 2006.
[41]
D. S. Chahal and S. K. Nanda, “Influence of the nature and concentration of calcium ions on production of activity of protease of Streptomyces spp,” Proceeding Indian Notational Science Academy, vol. 41, pp. 435–439, 1975.
[42]
S. A. Ul Qadar, E. Shireen, S. Iqbal, and A. Anwar, “Optimization of protease production from newly isolated strain of Bacillus sp. PCSIR EA-3,” Indian Journal of Biotechnology, vol. 8, no. 3, pp. 286–290, 2009.
[43]
K. Peek, R. M. Daniel, C. Monk, L. Parker, and T. Coolbear, “Purification and characterization of a thermostable proteinase isolated from Thermus sp. strain Rt41A,” European Journal of Biochemistry, vol. 207, no. 3, pp. 1035–1044, 1992.
[44]
L. S. Engel, J. M. Hill, A. R. Caballero, L. C. Green, and R. J. O'Callaghan, “Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa,” The Journal of Biological Chemistry, vol. 273, no. 27, pp. 16792–16797, 1998.
[45]
J. Frankena, G. M. Koningstein, H. W. van Verseveld, and A. H. Stouthamer, “Effect of different limitations in chemostat cultures on growth and production of exocellular protease by Bacillus licheniformis,” Applied Microbiology and Biotechnology, vol. 24, no. 2, pp. 106–112, 1986.
[46]
J. Votruba, J. Pazlarova, M. Dvorakova et al., “External factors involved in the regulation of synthesis of an extracellular proteinase in Bacillus megaterium: effect of temperature,” Applied Microbiology and Biotechnology, vol. 35, no. 3, pp. 352–357, 1991.
[47]
A. Deng, J. Wu, Y. Zhang, G. Zhang, and T. Wen, “Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001,” Bioresource Technology, vol. 101, no. 18, pp. 7100–7106, 2010.
[48]
K. Jellouli, O. Ghorbel-Bellaaj, H. B. Ayed, L. Manni, R. Agrebi, and M. Nasri, “Alkaline-protease from Bacillus licheniformis MP1: purification, characterization and potential application as a detergent additive and for shrimp waste deproteinization,” Process Biochemistry, vol. 46, no. 6, pp. 1248–1256, 2011.
[49]
P. ?alik, E. Bilir, G. ?alik, and T. H. ?zdamar, “Influence of pH conditions on metabolic regulations in serine alkaline protease production by Bacillus licheniformis,” Enzyme and Microbial Technology, vol. 31, no. 5, pp. 685–697, 2002.
[50]
R. N. Z. R. A. Rahman, M. Basri, and A. B. Salleh, “Thermostable alkaline protease from Bacillus stearothermophilus F1; nutritional factors affecting protease production,” Annals of Microbiology, vol. 53, no. 2, pp. 199–210, 2003.
[51]
R. S. Prakasham, C. Subba Rao, R. Sreenivas Rao, and P. N. Sarma, “Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agroindustrial waste: process parameters optimization,” Biotechnology Progress, vol. 21, no. 5, pp. 1380–1388, 2005.
[52]
C. Subba Rao, T. Sathish, P. Ravichandra, and R. S. Prakasham, “Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications,” Process Biochemistry, vol. 44, no. 3, pp. 262–268, 2009.
[53]
C. A. Razak, S. W. Tang, M. Basri, and A. B. Salleh, “Preliminary study on the production of extracellular protease from a newly isolated Bacillus sp. (no. 1) and the physical factors affecting its production,” Pertanika Journal of Science & Technology, vol. 5, no. 2, pp. 169–177, 1997.
[54]
A. Haddar, N. Fakhfakh-Zouari, N. Hmidet, F. Frikha, M. Nasri, and A. S. Kamoun, “Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and sardinella peptone,” Journal of Bioscience and Bioengineering, vol. 110, no. 3, pp. 288–294, 2010.
[55]
S. Mehrotra, P. K. Pandey, R. Gaur, and N. S. Darmwal, “The production of alkaline protease by a Bacillus species isolate,” Bioresource Technology, vol. 67, no. 2, pp. 201–203, 1999.
[56]
S. Jasvir, N. Gill, G. Devasahayam, and D. K. Sahoo, “Studies on alkaline protease produced by Bacillus sp. NG312,” Applied Biochemistry and Biotechnology A, vol. 76, no. 1, pp. 57–63, 1999.