Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized. 1. Introduction Together with glycoproteins and glycosaminoglycans, glycosphingolipids (GSLs) contribute to the glycocalyx that covers eukaryotic cell surfaces. Gangliosides are sialic acid-containing glycosphingolipids and provide a significant part of cell surface glycans on neuronal cells. GSLs are lipids that contain a sphingoid base and one or more sugar residues [1]. Sialic acids (Figure 1) are nine-carbon sugars biosynthetically formed from -acetylmannosamine and phosphoenolpyruvate [2, 3]. With a mean value of around 2.6, they are more acidic than the majority of carboxylic acids and negatively charged at most physiological pH values. The name “ganglioside” was coined by the German biochemist Klenk (1896–1971) and assigned to a group of acidic GSLs that he isolated from ganglion cells [4, 5] and from the brains of patients who suffered from the so-called amaurotic idiocy [6, 7]. Sialic acid was first isolated from submaxillary mucin in 1936 [8]. Its structure was elucidated in the nineteen fifties by different groups and it was found to be identical to that of the N-acetylneuraminic acid isolated by Klenk and Faillard. The first structure of a ganglioside was elucidated in 1963 by Kuhn and Wiegandt [9]. In 1962, Svennerholm suggested a nomenclature of brain gangliosides [10, 11]. The biochemical defects underlying the diseases formerly known as amaurotic idiocy, GM1-gangliosidosis [12], Tay-Sachs- [13], and Sandhoff disease [14] were identified by Sandhoff and others in the 1960s. Figure 1: Sialic acids. 2. Structure and Nomenclature In their structures, gangliosides combine a glycan and a lipid portion and contribute to both, the cellular lipidome and the glycome/sialome [15]. A great variety of carbohydrate sequences are found within the GSLs [16], including the gangliosides [17]. Although carbohydrate residues of different structure, linkage, and anomeric configuration occur in GSLs, only a limited number of the so-called series with characteristic carbohydrate sequences are found within evolutionary related organisms (Table 1). Within the gangliosides, sialic acids can be attached only to a few of the GSL series, in adult mammals especially to the ganglio series. Table 1: GSL
References
[1]
E. Fahy, S. Subramaniam, H. A. Brown et al., “A comprehensive classification system for lipids,” Journal of Lipid Research, vol. 46, no. 5, pp. 839–861, 2005.
[2]
S. Wickramasinghe and J. F. Medrano, “Primer on genes encoding enzymes in sialic acid metabolism in mammals,” Biochimie, vol. 93, pp. 1641–1646, 2011.
[3]
T. Miyagi and K. Yamaguchi, “Sialic acids,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 297–322, Elsevier, Oxford, UK, 2007.
[4]
E. Klenk, “über die Ganglioside, eine neue Gruppe von zuckerhaltigen Gehirnlipoiden,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 273, pp. 76–86, 1942.
[5]
E. Klenk, “über die Natur der Phosphatide und anderer Lipide des Gehirns und der Leber bei der Niemann-Pick'schen Krankheit,” Zeitschrift für Physiologische Chemie, vol. 235, pp. 24–25, 1935.
[6]
E. Klenk, “über die Ganglioside des Gehirns bei der infantilen amaurotischen Idiotie vom Typ Tay-Sachs,” Berichte der Deutschen Chemischen Gesellschaft, vol. 75, pp. 1632–1636, 1942.
[7]
E. Klenk, “Die Fettstoffe des Gehirns bei amaurotischer Idiotie und Niemann-Pick'scher Krankheit,” Berichte über die Gesamte Physiologie und Experimentelle, vol. 96, pp. 659–660, 1937.
[8]
G. Blix, “über die Kohlenhydratgruppen des Submaxillarismucins,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 240, pp. 43–54, 1936.
[9]
R. Kuhn and H. Wiegandt, “Die Konstitution der Ganglio-N-tetraose und des Gangliosides GI,” Chemische Berichte, vol. 96, pp. 866–880, 1963.
[10]
L. Svennerholm, “Chromatographic separation of human brain gangliosides,” Journal of Neurochemistry, vol. 10, pp. 613–623, 1963.
[11]
L. Svennerholm, “The gangliosides,” Journal of Lipid Research, vol. 5, pp. 145–155, 1964.
[12]
H. Jatzkewitz and K. Sandhoff, “On a biochemically special form of infantile amaurotic idiocy,” Biochimica et Biophysica Acta, vol. 70, no. C, pp. 354–356, 1963.
[13]
K. Sandhoff, “Variation of β-N-acetylhexosaminidase-pattern in Tay-Sachs disease,” FEBS Letters, vol. 4, no. 4, pp. 351–354, 1969.
[14]
K. Sandhoff, U. Andreae, and H. Jatzkewitz, “Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs,” Pathologia Europaea, vol. 3, no. 2, pp. 278–285, 1968.
[15]
M. Cohen and A. Varki, “The sialome-far more than the sum of its parts,” OMICS, vol. 14, no. 4, pp. 455–464, 2010.
[16]
R. K. Yu, M. Yanagisawa, and T. Ariga, “Glycosphingolipid structures,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 1, pp. 73–122, Elsevier, Oxford, UK, 2007.
[17]
R. K. Yu, Y. T. Tsai, T. Ariga, and M. Yanagisawa, “Structures, biosynthesis, and functions of gangliosides—an overview,” Journal of Oleo Science, vol. 60, pp. 537–544, 2011.
[18]
R. Schauer, “Sialic acids: fascinating sugars in higher animals and man,” Zoology, vol. 107, no. 1, pp. 49–64, 2004.
[19]
T. Angata and A. Varki, “Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective,” Chemical Reviews, vol. 102, no. 2, pp. 439–469, 2002.
[20]
R. Schauer, “Sialic acids as regulators of molecular and cellular interactions,” Current Opinion in Structural Biology, vol. 19, no. 5, pp. 507–514, 2009.
[21]
G. Kohla and R. Schauer, “Sialic acids in gangliosides: origin and function,” in Neuroglycobiology, Oxford University Press, Oxford, UK, 2005.
[22]
M. A. Chester, “Nomenclature of glycolipids,” Pure and Applied Chemistry, vol. 69, pp. 2475–2487, 1997.
[23]
S. Ando, “Neuronal dysfunction with aging and its amelioration,” Proceedings of the Japan Academy B, vol. 88, pp. 266–282, 2012.
[24]
H. Suila, V. Pitk?nen, T. Hirvonen et al., “Are globoseries glycosphingolipids SSEA-3 and -4 markers for stem cells derived from human umbilical cord blood?” Journal of Molecular Cell Biology, vol. 3, no. 2, pp. 99–107, 2011.
[25]
Y. T. Li, “On the structural elucidation of GalNAc-GD1a,” Neurochemical Research, vol. 37, pp. 1150–1153, 2012.
[26]
H. Yoshino, T. Ariga, A. Suzuki, R. K. Yu, and T. Miyatake, “Identification of gangliosides recognized by IgG anti-GalNAc-GD1a antibodies in bovine spinal motor neurons and motor nerves,” Brain Research, vol. 1227, no. C, pp. 216–220, 2008.
[27]
K. Kaida, M. Sonoo, G. Ogawa et al., “GM1/GalNAc-GD1a complex: a target for pure motor Guillain-Barré syndrome,” Neurology, vol. 71, no. 21, pp. 1683–1690, 2008.
[28]
C. W. Ang, N. Yuki, B. C. Jacobs et al., “Rapidly progressive, predominantly motor Guillain-Barre syndrome with anti-GalNAc-GD1a antibodies,” Neurology, vol. 53, no. 9, pp. 2122–2127, 1999.
[29]
N. Yuki and H. P. Hartung, “Medical progress guillain-barre syndrome,” The New England Journal of Medicine, vol. 366, pp. 2294–2304, 2012.
[30]
T. Yamazaki, M. Suzuki, T. Irie, T. Watanabe, H. Mikami, and S. Ono, “Amyotrophic lateral sclerosis associated with IgG anti-GalNAc-GD1a antibodies,” Clinical Neurology and Neurosurgery, vol. 110, no. 7, pp. 722–724, 2008.
[31]
Y. T. Li, K. Maskos, C. W. Chou, R. B. Cole, and S. C. Li, “Presence of an unusual GM2 derivative, taurine-conjugated GM2, in Tay-Sachs brain,” The Journal of Biological Chemistry, vol. 278, no. 37, pp. 35286–35291, 2003.
[32]
S. Hakomori, “Structure and functional interaction of glycosphingolipids inducing signal transduction to affect cellular phenotype,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 4, pp. 267–288, Elsevier, Oxford, UK, 2007.
[33]
T. Nakao, K. Kon, S. Ando et al., “Novel lacto-ganglio type gangliosides with G(M2)-epitope in bovine brain which react with IgM from a patient of the amyotrophic lateral sclerosis- like disorder,” The Journal of Biological Chemistry, vol. 268, no. 28, pp. 21028–21034, 1993.
[34]
R. Kannagi, N. A. Cochran, F. Ishigami et al., “Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells,” The EMBO Journal, vol. 2, no. 12, pp. 2355–2361, 1983.
[35]
S. B. Levery, M. E. K. Salyan, S. J. Steele et al., “A revised structure for the disialosyl globo-series gangliosides of human erythrocytes and chicken skeletal muscle,” Archives of Biochemistry and Biophysics, vol. 312, no. 1, pp. 125–134, 1994.
[36]
A. E. Stapleton, M. R. Stroud, S. I. Hakomori, and W. E. Stamm, “The globoseries glycosphingolipid sialosyl galactosyl globoside is found in urinary tract tissues and is a preferred binding receptor in vitro for uropathogenic Escherichia coli expressing pap-encoded adhesins,” Infection and Immunity, vol. 66, no. 8, pp. 3856–3861, 1998.
[37]
M. Yanagisawa, “Stem cell glycolipids,” Neurochemical Research, vol. 36, pp. 1623–1635, 2011.
[38]
M. Sugita, “Studies on the glycosphingolipids of the starfish, Asterina pectinifera: III. Isolation and structural studies of two novel gangliosides containing internal sialic acid residues,” Journal of Biochemistry, vol. 86, no. 3, pp. 765–772, 1979.
[39]
G. P. Smirnova and N. K. Kochetkov, “A novel sialoglycolipid from hepatopancreas of the starfish Patiria pectinifera,” Biochimica et Biophysica Acta, vol. 618, no. 3, pp. 486–495, 1980.
[40]
R. Higuchi, M. Inagaki, K. Yamada, and T. Miyamoto, “Biologically active gangliosides from echinoderms,” Journal of Natural Medicines, vol. 61, no. 4, pp. 367–370, 2007.
[41]
T. Hori and M. Sugita, “Sphingolipids in lower animals,” Progress in Lipid Research, vol. 32, no. 1, pp. 25–45, 1993.
[42]
S. Itonori and M. Sugita, “Glycophylogenetic aspects of lower animals,” in Comprehensive Glycoscience, J. P. Kamerling, J. P. Kamerling, G. J. Boons et al., Eds., vol. 3, pp. 253–284, Elsevier, Oxford, UK, 2007.
[43]
M. Inagaki, M. Shiizaki, T. Hiwatashi, T. Miyamoto, and R. Higuchi, “Constituents of crinoidea. 5. Isolation and structure of a new glycosyl inositolphosphoceramide-type ganglioside from the feather star Comanthina schlegeli,” Chemical and Pharmaceutical Bulletin, vol. 55, no. 11, pp. 1649–1651, 2007.
[44]
K. Arao, M. Inagaki, T. Miyamoto, and R. Higuchi, “Constituents of crinoidea. 3. Isolation and structure of a glycosyl inositolphosphoceramide-type ganglioside with neuritogenic activity from the feather star Comanthus japonica,” Chemical and Pharmaceutical Bulletin, vol. 52, no. 9, pp. 1140–1142, 2004.
[45]
M. Kaneko, K. Yamada, T. Miyamoto, M. Inagaki, and R. Higuchi, “Neuritogenic activity of gangliosides from echinoderms and their structure-activity relationship,” Chemical and Pharmaceutical Bulletin, vol. 55, no. 3, pp. 462–463, 2007.
[46]
M. Kaneko, F. Kisa, K. Yamada, T. Miyamoto, and R. Higuchi, “Structure of a new neuritogenic-active ganglioside from the sea cucumber Stichopus japonicus,” European Journal of Organic Chemistry, no. 6, pp. 1004–1008, 2003.
[47]
R. Higuchi, S. Matsumoto, R. Isobe, and T. Miyamoto, “Structure determination of the major component of the starfish ganglioside molecular species LG-2 by tandem mass spectrometry,” Tetrahedron, vol. 51, no. 33, pp. 8961–8968, 1995.
[48]
M. Inagaki, T. Miyamoto, R. Isobe, and R. Higuchi, “Biologically active glycosides from asteroidea, 43. Isolation and structure of a new neuritogenic-active ganglioside molecular species from the starfish Linckia laevigata,” Chemical and Pharmaceutical Bulletin, vol. 53, no. 12, pp. 1551–1554, 2005.
[49]
J. R. Rich and S. G. Withers, “A chemoenzymatic total synthesis of the neurogenic starfish ganglioside LLG-3 using an engineered and evolved synthase,” Angewandte Chemie, vol. 51, pp. 8640–8643, 2012.
[50]
H. Tamai, H. Ando, H. N. Tanaka et al., “The total synthesis of the neurogenic ganglioside LLG-3 isolated from the starfish Linckia laevigata,” Angewandte Chemie, vol. 50, no. 10, pp. 2330–2333, 2011.
[51]
S. T. Pruett, A. Bushnev, K. Hagedorn et al., “Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols,” Journal of Lipid Research, vol. 49, no. 8, pp. 1621–1639, 2008.
[52]
S. Dasgupta, S. B. Levery, and E. L. Hogan, “3-O-acetyl-sphingosine-series myelin glycolipids: characterization of novel 3-O-acetyl-sphingosine galactosylceramide,” Journal of Lipid Research, vol. 43, no. 5, pp. 751–761, 2002.
[53]
H. Hama, “Fatty acid 2-Hydroxylation in mammalian sphingolipid biology,” Biochimica et Biophysica Acta, vol. 1801, no. 4, pp. 405–414, 2010.
[54]
R. Mahfoud, A. Manis, B. Binnington, C. Ackerley, and C. A. Lingwood, “A major fraction of glycosphingolipids in model and cellular cholesterol-containing membranes is undetectable by their binding proteins,” The Journal of Biological Chemistry, vol. 285, no. 46, pp. 36049–36059, 2010.
[55]
C. A. Lingwood, A. Manis, R. Mahfoud, F. Khan, B. Binnington, and M. Mylvaganam, “New aspects of the regulation of glycosphingolipid receptor function,” Chemistry and Physics of Lipids, vol. 163, no. 1, pp. 27–35, 2010.
[56]
D. J. Chinnapen, W. T. Hsieh, Y. M. Te Welscher et al., “Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1,” Developmental Cell, vol. 23, pp. 573–586, 2012.
[57]
I. Kracun, H. Rosner, C. Cosovic, and A. Stavljenic, “Topographical atlas of the gangliosides of the adult human brain,” Journal of Neurochemistry, vol. 43, no. 4, pp. 979–989, 1984.
[58]
H. Rahmann, “Brain gangliosides and memory formation,” Behavioural Brain Research, vol. 66, no. 1-2, pp. 105–116, 1995.
[59]
B. Wang, “Sialic acid is an essential nutrient for brain development and cognition,” Annual Review of Nutrition, vol. 29, pp. 177–222, 2009.
[60]
K. Hirschberg, R. Zisling, G. Van Echten-Deckert, and A. H. Futerman, “Ganglioside synthesis during the development of neuronal polarity: major changes occur during axonogenesis and axon elongation, but not during dendrite growth or synaptogenesis,” The Journal of Biological Chemistry, vol. 271, no. 25, pp. 14876–14882, 1996.
[61]
M. Iwamori, J. Shimomura, S. Tsuyuhara, and Y. Nagai, “Gangliosides of various rat tissues: distribution of ganglio-N-tetraose-containing gangliosides and tissue-characteristic composition of gangliosides,” Journal of Biochemistry, vol. 95, no. 3, pp. 761–770, 1984.
[62]
T. Yamashita, R. Wada, T. Sasaki et al., “A vital role for glycosphingolipid synthesis during development and differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9142–9147, 1999.
[63]
D. H. Kwak, B. B. Seo, K. T. Chang, and Y. K. Choo, “Roles of gangliosides in mouse embryogenesis and embryonic stem cell differentiation,” Experimental and Molecular Medicine, vol. 43, no. 7, pp. 379–388, 2011.
[64]
S. I. Hakomori, “Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism,” Cancer Research, vol. 56, no. 23, pp. 5309–5318, 1996.
[65]
E. Posse de Chaves and S. Sipione, “Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction,” FEBS Letters, vol. 584, no. 9, pp. 1748–1759, 2010.
[66]
R. K. Yu, Y. Nakatani, and M. Yanagisawa, “The role of glycosphingolipid metabolism in the developing brain,” Journal of Lipid Research, vol. 50, pp. S440–445, 2009.
[67]
K. Segler Stahl, J. C. Webster, and E. G. Brunngraber, “Changes in the concentration and composition of human brain gangliosides with aging,” Gerontology, vol. 29, no. 3, pp. 161–168, 1983.
[68]
E. Ozkok, S. Cengiz, and B. Guvener, “Age-dependent changes in liver ganglioside levels,” Journal of Basic & Clinical Physiology & Pharmacology, vol. 10, pp. 337–344, 1999.
[69]
H. J. Senn, M. Orth, E. Fitzke, H. Wieland, and W. Gerok, “Ganglioside in normal human serum. Concentration, pattern and transport by lipoproteins,” European Journal of Biochemistry, vol. 181, no. 3, pp. 657–662, 1989.
[70]
G. Muller, “Microvesicles/exosomes as potential novel biomarkers of metabolic diseases,” Diabetes, Metabolic Syndrome and Obesity, vol. 5, pp. 247–282, 2012.
[71]
C. Dumontet, A. Rebbaa, and J. Portoukalian, “Kinetics and organ distribution of [14C]-sialic acid-GM3 and [3H]-sphingosine-GM1 after intravenous injection in rats,” Biochemical and Biophysical Research Communications, vol. 189, no. 3, pp. 1410–1416, 1992.
[72]
H. Miller-Podraza, R. M. Bradley, and P. H. Fishman, “Biosynthesis and localization of gangliosides in cultured cells,” Biochemistry, vol. 21, no. 14, pp. 3260–3265, 1982.
[73]
T. Garofalo, A. Tinari, P. Matarrese et al., “Do mitochondria act as "cargo boats" in the journey of GD3 to the nucleus during apoptosis?” FEBS Letters, vol. 581, no. 21, pp. 3899–3903, 2007.
[74]
R. Ledeen and G. Wu, “New findings on nuclear gangliosides: overview on metabolism and function,” Journal of Neurochemistry, vol. 116, no. 5, pp. 714–720, 2011.
[75]
N. C. Lucki and M. B. Sewer, “Nuclear sphingolipid metabolism,” Annual Review of Physiology, vol. 74, pp. 131–151, 2012.
[76]
G. Kohla, E. Stockfleth, and R. Schauer, “Gangliosides with O-acetylated sialic acids in tumors of neuroectodermal origin,” Neurochemical Research, vol. 27, no. 7-8, pp. 583–592, 2002.
[77]
C. Schwegmann-Wessels and G. Herrler, “Sialic acids as receptor determinants for coronaviruses,” Glycoconjugate Journal, vol. 23, no. 1-2, pp. 51–58, 2006.
[78]
Y. N. Malykh, R. Schauer, and L. Shaw, “N-Glycolylneuraminic acid in human tumours,” Biochimie, vol. 83, no. 7, pp. 623–634, 2001.
[79]
D. Ghaderi, M. Zhang, N. Hurtado-Ziola, and A. Varki, “Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation,” Biotechnology & Genetic Engineering Reviews, vol. 28, pp. 147–175, 2012.
[80]
R. Schauer, G. V. Srinivasan, B. Coddeville, J. P. Zanetta, and Y. Guérardel, “Low incidence of N-glycolylneuraminic acid in birds and reptiles and its absence in the platypus,” Carbohydrate Research, vol. 344, no. 12, pp. 1494–1500, 2009.
[81]
K. H. Song, Y. J. Kang, U. H. Jin et al., “Cloning and functional characterization of pig CMP- N-acetylneuraminic acid hydroxylase for the synthesis of N-glycolylneuraminic acid as the xenoantigenic determinant in pig-human xenotransplantation,” Biochemical Journal, vol. 427, no. 1, pp. 179–188, 2010.
[82]
G. A. Andrews, P. S. Chavey, J. E. Smith, and L. Rich, “N-glycolylneuraminic acid and N-acetylneuraminic acid define feline blood group A and B antigens,” Blood, vol. 79, no. 9, pp. 2485–2491, 1992.
[83]
H. H. Chou, H. Takematsu, S. Diaz et al., “A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11751–11756, 1998.
[84]
A. Varki, “Multiple changes in sialic acid biology during human evolution,” Glycoconjugate Journal, vol. 26, no. 3, pp. 231–245, 2009.
[85]
A. Varki, “Uniquely human evolution of sialic acid genetics and biology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, supplement 2, pp. 8939–8946, 2010.
[86]
S. L. Diaz, V. Padler-Karavani, D. Ghaderi et al., “Sensitive and specific detection of the non-human sialic acid N-Glycolylneuraminic acid in human tissues and biotherapeutic products,” PLoS ONE, vol. 4, no. 1, Article ID e4241, 2009.
[87]
M. Zarei, J. Müthing, J. Peter-Katalini?, and L. Bindila, “Separation and identification of GM1b pathway Neu5Ac- and Neu5Gc gangliosides by on-line nanoHPLC-QToF MS and tandem MS: toward glycolipidomics screening of animal cell lines,” Glycobiology, vol. 20, no. 1, pp. 118–126, 2010.
[88]
R. Blanco, C. E. Rengifo, M. Cede?o, M. Frómeta, E. Rengifo, and A. Carr, “Immunoreactivity of the 14F7 mab (raised against N-Glycolyl GM3 ganglioside) as a positive prognostic factor in non-small-cell lung cancer,” Pathology Research International, vol. 2012, Article ID 235418, 12 pages, 2012.
[89]
S. K. Gross, M. A. Williams, and R. H. McCluer, “Alkali-labile, sodium borohydride-reducible ganglioside sialic acid residues in brain,” Journal of Neurochemistry, vol. 34, no. 6, pp. 1351–1361, 1980.
[90]
L. Riboni, S. Sonnino, and D. Acquotti, “Natural occurrence of ganglioside lactones. Isolation and characterization of G(D1b) inner ester from adult human brain,” The Journal of Biological Chemistry, vol. 261, no. 18, pp. 8514–8519, 1986.
[91]
G. A. Nores, T. Dohi, M. Taniguchi, and S. I. Hakomori, “Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen,” Journal of Immunology, vol. 139, no. 9, pp. 3171–3176, 1987.
[92]
M. Tsuda, T. Terabayashi, and Y. Kawanishi, “Observation of ganglioside lactone formation with CD spectrometry,” Chemistry and Physics of Lipids, vol. 70, no. 1, pp. 95–99, 1994.
[93]
S. Sonnino and V. Chigorno, “Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures,” Biochimica et Biophysica Acta, vol. 1469, no. 2, pp. 63–77, 2000.
[94]
P. Palestini, M. Masserini, A. Fiorilli, E. Calappi, and G. Tettamanti, “Age-related changes in the ceramide composition of the major gangliosides present in rat brain subcellular fractions enriched in plasma membranes of neuronal and myelin origin,” Journal of Neurochemistry, vol. 61, no. 3, pp. 955–960, 1993.
[95]
M. Valsecchi, P. Palestini, V. Chigorno, and S. Sonnino, “Age-related changes of the ganglioside long-chain base composition in rat cerebellum,” Neurochemistry International, vol. 28, no. 2, pp. 183–187, 1996.
[96]
P. Palestini, M. Masserini, S. Sonnino, A. Giuliani, and G. Tettamanti, “Changes in the ceramide composition of rat forebrain gangliosides with age,” Journal of Neurochemistry, vol. 54, no. 1, pp. 230–235, 1990.
[97]
Y. Sugiura, S. Shimma, Y. Konishi, M. K. Yamada, and M. Setou, “Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus,” PLoS ONE, vol. 3, no. 9, Article ID e3232, 2008.
[98]
K. Ogawa-Goto, N. Funamoto, T. Abe, and K. Nagashima, “Different ceramide compositions of gangliosides between human motor and sensory nerves,” Journal of Neurochemistry, vol. 55, no. 5, pp. 1486–1493, 1990.
[99]
P. McJarrow, N. Schnell, J. Jumpsen, and T. Clandinin, “Influence of dietary gangliosides on neonatal brain development,” Nutrition Reviews, vol. 67, no. 8, pp. 451–463, 2009.
[100]
R. Rueda, “The role of dietary gangliosides on immunity and the prevention of infection,” British Journal of Nutrition, vol. 98, supplement 1, pp. S68–S73, 2007.
[101]
H. Farwanah and T. Kolter, “Lipidomics of glycosphingolipids,” Metabolites, vol. 2, pp. 134–164, 2012.
[102]
R. Lacomba, J. Salcedo, A. Alegría, M. Jesús Lagarda, R. Barberá, and E. Matencio, “Determination of sialic acid and gangliosides in biological samples and dairy products: a review,” Journal of Pharmaceutical and Biomedical Analysis, vol. 51, no. 2, pp. 346–357, 2010.
[103]
W. Q. Wang and A. Gustafson, “Ganglioside extraction from erythrocytes: a comparison study,” Acta Chemica Scandinavica, vol. 49, no. 12, pp. 929–936, 1995.
[104]
L. Svennerholm and P. Fredman, “A procedure for the quantitative isolation of brain gangliosides,” Biochimica et Biophysica Acta, vol. 617, no. 1, pp. 97–109, 1980.
[105]
M. C. Byrne, M. Sbaschnig-Agler, and D. A. Aquino, “Procedure for isolation of gangliosides in high yield and purity: simultaneous isolation of neutral glycosphingolipids,” Analytical Biochemistry, vol. 148, no. 1, pp. 163–173, 1985.
[106]
J. Folch, M. Lees, and G. H. Sloane Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957.
[107]
A. E. Manzi and B. K. Hayes, “Unit 17.21A HPLC methods for the fractionation and analysis of negatively charged oligosaccharides and gangliosides,” in Current Protocols in Molecular Biology, chapter 17, 2001.
[108]
R. K. Yu and R. W. Ledeen, “Gangliosides of human, bovine, and rabbit plasma,” Journal of Lipid Research, vol. 13, no. 5, pp. 680–686, 1972.
[109]
X. Jiang, H. Cheng, K. Yang, R. W. Gross, and X. Han, “Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low-abundance regime of cellular sphingolipids,” Analytical Biochemistry, vol. 371, no. 2, pp. 135–145, 2007.
[110]
Z. Vukelic, S. Kalanj-Bognar, M. Froesch, et al., “Human gliosarcoma—associated ganglioside composition is complex and distinctive as evidenced by high-performance mass spectrometric determination and structural characterization,” Glycobiology, vol. 17, no. 5, pp. 504–515, 2007.
[111]
F. Scandroglio, N. Loberto, M. Valsecchi, V. Chigorno, A. Prinetti, and S. Sonnino, “Thin layer chromatography of gangliosides,” Glycoconjugate Journal, vol. 26, no. 8, pp. 961–973, 2009.
[112]
E. Sisu, C. Flangea, A. Serb, A. Rizzi, and A. D. Zamfir, “High-performance separation techniques hyphenated to mass spectrometry for ganglioside analysis,” Electrophoresis, vol. 32, no. 13, pp. 1591–1609, 2011.
[113]
T. Tai, I. Kawashima, and K. Ogura, “Anticarbohydrate antibodies,” in Comprehensive Glycoscience, J. P. Kamerling, J. P. Kamerling, G. J. Boons et al., Eds., vol. 3, pp. 765–783, Elsevier, Oxford, UK, 2007.
[114]
I. Meisen, M. Mormann, and J. Muthing, “Thin-layer chromatography, overlay technique and mass spectrometry: a versatile triad advancing glycosphingolipidomics,” Biochimica et Biophysica Acta, vol. 1811, no. 11, pp. 875–896, 2011.
[115]
T. Valdes-Gonzalez, N. Goto-Inoue, W. Hirano et al., “New approach for glyco- and lipidomics—Molecular scanning of human brain gangliosides by TLC-Blot and MALDI-QIT-TOF MS,” Journal of Neurochemistry, vol. 116, no. 5, pp. 678–683, 2011.
[116]
H. Kadowaki, J. E. Evans, and R. H. McCluer, “Separation of brain monosialoganglioside molecular species by high-performance liquid chromatography,” Journal of Lipid Research, vol. 25, no. 10, pp. 1132–1139, 1984.
[117]
G. Gazzotti, S. Sonnino, and R. Ghidoni, “Separation of ganglioside molecular species, with homogeneous long-chain base composition, by reversed-phase thin-layer chromatography,” Journal of Chromatography, vol. 315, pp. 395–400, 1984.
[118]
L. Mauri, M. Valsecchi, R. Casellato, S. C. Li, Y. T. Li, and S. Sonnino, “Procedure for separation of GM2 ganglioside species with different ceramide structures by a flash reversed-phase silica gel liquid chromatography,” Journal of Chromatography B, vol. 796, no. 1, pp. 1–10, 2003.
[119]
S. B. Levery, “Glycosphingolipid structural analysis and glycosphingolipidomics,” Methods in Enzymology, vol. 405, pp. 300–369, 2006.
[120]
M. I. Demarco and R. J. Woods, “Atomic-resolution conformational analysis of the GM3 ganglioside in a lipid bilayer and its implications for ganglioside-protein recognition at membrane surfaces,” Glycobiology, vol. 19, no. 4, pp. 344–355, 2009.
[121]
A. Varki, “Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 6, Article ID a005462, 2011.
[122]
G. Tettamanti, “Ganglioside/glycosphingolipid turnover: new concepts,” Glycoconjugate Journal, vol. 20, no. 5, pp. 301–317, 2003.
[123]
G. Tettamanti, R. Bassi, P. Viani, and L. Riboni, “Salvage pathways in glycosphingolipid metabolism,” Biochimie, vol. 85, no. 3-4, pp. 423–437, 2003.
[124]
E. C. Mandon, I. Ehses, J. Rother, G. Van Echten, and K. Sandhoff, “Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver,” The Journal of Biological Chemistry, vol. 267, no. 16, pp. 11144–11148, 1992.
[125]
A. H. Merrill, “Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics,” Chemical Reviews, vol. 111, pp. 6387–6422, 2011.
[126]
G. van Meer and S. Hoetzl, “Sphingolipid topology and the dynamic organization and function of membrane proteins,” FEBS Letters, vol. 584, no. 9, pp. 1800–1805, 2010.
[127]
H. Ikushiro and H. Hayashi, “Mechanistic enzymology of serine palmitoyltransferase,” Biochimica et Biophysica Acta, vol. 1814, pp. 1474–1480, 2011.
[128]
Y. Hirabayashi and S. Furuya, “Roles of l-serine and sphingolipid synthesis in brain development and neuronal survival,” Progress in Lipid Research, vol. 47, no. 3, pp. 188–203, 2008.
[129]
K. Yoshida, S. Furuya, S. Osuka et al., “Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality,” The Journal of Biological Chemistry, vol. 279, no. 5, pp. 3573–3577, 2004.
[130]
Y. Hirabayashi, “A world of sphingolipids and glycolipids in the brain–novel functions of simple lipids modified with glucose,” Proceedings of the Japan Academy B, vol. 88, pp. 129–143, 2012.
[131]
T. D. Mullen, Y. A. Hannun, and L. M. Obeid, “Ceramide synthases at the centre of sphingolipid metabolism and biology,” Biochemical Journal, vol. 441, pp. 789–802, 2012.
[132]
L. Zhao, S. D. Spassieva, T. J. Jucius et al., “A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation,” PLoS Genetics, vol. 7, no. 5, Article ID e1002063, 2011.
[133]
Y. Mizutani, A. Kihara, H. Chiba, H. Tojo, and Y. Igarashi, “2-Hydroxy-ceramide synthesis by ceramide synthase family: enzymatic basis for the preference of FA chain length,” Journal of Lipid Research, vol. 49, no. 11, pp. 2356–2364, 2008.
[134]
G. Fabrias, J. Munoz-Olaya, F. Cingolani et al., “Dihydroceramide desaturase and dihydrosphingolipids: debutant players in the sphingolipid arena,” Progress in Lipid Research, vol. 51, pp. 82–94, 2012.
[135]
K. Hanada, “Intracellular trafficking of ceramide by ceramide transfer protein,” Proceedings of the Japan Academy B, vol. 86, no. 4, pp. 426–437, 2010.
[136]
M. A. Olayioye and A. Hausser, “Integration of non-vesicular and vesicular transport processes at the Golgi complex by the PKD-CERT network,” Biochimica et Biophysica Acta, vol. 1821, pp. 1096–1103, 2012.
[137]
K. Hanada, K. Kumagai, N. Tomishige, and T. Yamaji, “CERT-mediated trafficking of ceramide,” Biochimica et Biophysica Acta, vol. 1791, no. 7, pp. 684–691, 2009.
[138]
J. L. Daniotti and R. Iglesias-Bartolomé, “Metabolic pathways and intracellular trafficking of gangliosides,” IUBMB Life, vol. 63, no. 7, pp. 513–520, 2011.
[139]
W. W. Young, M. S. Lutz, and W. A. Blackburn, “Endogenous glycosphingolipids move to the cell surface at a rate consistent with bulk flow estimates,” The Journal of Biological Chemistry, vol. 267, no. 17, pp. 12011–12015, 1992.
[140]
H. J. F. MacCioni, R. Quiroga, and M. L. Ferrari, “Cellular and molecular biology of glycosphingolipid glycosylation,” Journal of Neurochemistry, vol. 117, no. 4, pp. 589–602, 2011.
[141]
T. Kolter, R. L. Proia, and K. Sandhoff, “Combinatorial ganglioside biosynthesis,” The Journal of Biological Chemistry, vol. 277, no. 29, pp. 25859–25862, 2002.
[142]
S. C. Basu, “The serendipity of ganglioside biosynthesis: pathway to CARS and HY-CARS glycosyltransferases,” Glycobiology, vol. 1, no. 5, pp. 469–475, 1991.
[143]
G. Pohlentz, D. Klein, G. Schwarzmann, D. Schmitz, and K. Sandhoff, “Both GA2, GM2, and GD2 synthases and GM1b, GD1a, and GT1b synthases are single enzymes in Golgi vesicles from rat liver,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 19, pp. 7044–7048, 1988.
[144]
H. Iber, R. Kaufmann, G. Pohlentz, G. Schwarzmann, and K. Sandhoff, “Identity of G(A1), G(M1a) and G(D1b) synthase in Golgi vesicles from rat liver,” FEBS Letters, vol. 248, no. 1-2, pp. 18–22, 1989.
[145]
H. Iber and K. Sandhoff, “Identity of G(D1C), G(T1a) and G(Q1b) synthase in Golgi vesicles from rat liver,” FEBS Letters, vol. 254, no. 1-2, pp. 124–128, 1989.
[146]
H. Iber, G. Van Echten, and K. Sandhoff, “Substrate specificity of α2→3-sialyltransferases in ganglioside biosynthesis of rat liver Golgi,” European Journal of Biochemistry, vol. 195, no. 1, pp. 115–120, 1991.
[147]
H. Iber, C. Zacharias, and K. Sandhoff, “The c-series gangliosides G(T3), G(T2) and G(P1c) are formed in rat liver Golgi by the same set of glycosyltransferases that catalyse the biosynthesis of asialo-, a- and b-series gangliosides,” Glycobiology, vol. 2, no. 2, pp. 137–142, 1992.
[148]
M. Audry, C. Jeanneau, A. Imberty, A. Harduin-Lepers, P. Delannoy, and C. Breton, “Current trends in the structure-activity relationships of sialyltransferases,” Glycobiology, vol. 21, no. 6, pp. 716–726, 2011.
[149]
A. Harduin-Lepers, “Comprehensive analysis of sialyltransferases in vertebrate genomes,” Glycobiology Insights, vol. 2, pp. 29–61, 2010.
[150]
L. Svennerholm, B. M. Rynmark, G. Vilbergsson et al., “Gangliosides in human fetal brain,” Journal of Neurochemistry, vol. 56, no. 5, pp. 1763–1768, 1991.
[151]
M. Kotani, I. Kawashima, H. Ozawa, T. Terashima, and T. Tai, “Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies,” Glycobiology, vol. 3, no. 2, pp. 137–146, 1993.
[152]
T. R. Henion, D. Zhou, D. P. Wolfer, F. B. Jungalwala, and T. Hennet, “Cloning of a Mouse β1,3 N-Acetylglucosaminyltransferase GlcNAc(β1,3)Gal(β1,4)Glc-ceramide Synthase Gene Encoding the Key Regulator of Lacto-series Glycolipid Biosynthesis,” The Journal of Biological Chemistry, vol. 276, no. 32, pp. 30261–30269, 2001.
[153]
A. Togayachi, T. Akashima, R. Ookubo et al., “Molecular Cloning and Characterization of UDP-GlcNAc:Lactosylceramide β1,3-N-Acetylglucosaminyltransferase (β3Gn-T5), an Essential Enzyme for the Expression of HNK-1 and Lewis X Epitopes on Glycolipids,” The Journal of Biological Chemistry, vol. 276, no. 25, pp. 22032–22040, 2001.
[154]
C. T. Kuan, J. Chang, J. E. Mansson et al., “Multiple phenotypic changes in mice after knockout of the B3gnt5 gene, encoding Lc3 synthase—a key enzyme in lacto-neolacto ganglioside synthesis,” BMC Developmental Biology, vol. 10, p. 114, 2010.
[155]
D. K. H. Chou and F. B. Jungalwala, “N-acetylglucosaminyl transferase regulates the expression of the sulfoglucuronyl glycolipids in specific cell types in cerebellum during development,” The Journal of Biological Chemistry, vol. 271, no. 46, pp. 28868–28874, 1996.
[156]
M. A. Simpson, H. Cross, C. Proukakis et al., “Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase,” Nature Genetics, vol. 36, no. 11, pp. 1225–1229, 2004.
[157]
G. Scheel, E. Acevedo, and E. Conzelmann, “Model for the interaction of membrane-bound substrates and enzymes. Hydrolysis of ganglioside G(D1a) by sialidase of neuronal membranes isolated from calf brain,” European Journal of Biochemistry, vol. 127, no. 2, pp. 245–253, 1982.
[158]
G. Zhu, M. L. Allende, E. Jaskiewicz et al., “Two soluble glycosyltransferases glycosylate less efficiently in vivo than their membrane bound counterparts,” Glycobiology, vol. 8, no. 8, pp. 831–840, 1998.
[159]
P. M. Crespo, V. T. Demichelis, and J. L. Daniotti, “Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases,” The Journal of Biological Chemistry, vol. 285, no. 38, pp. 29179–29190, 2010.
[160]
A. Banchet-Cadeddu, E. Hénon, M. Dauchez, J. H. Renault, F. Monneaux, and A. Haudrechy, “The stimulating adventure of KRN 7000,” Organic and Biomolecular Chemistry, vol. 9, no. 9, pp. 3080–3104, 2011.
[161]
R. Kuhn and H. Wiegandt, “Further gangliosides from the human brain,” Zeitschrift für Naturforschung B, vol. 19, pp. 256–257, 1964.
[162]
R. W. Ledeen, R. K. Yu, and L. F. Eng, “Gangliosides of human myelin: sialosylgalactosylceramide (G7) as a major component,” Journal of Neurochemistry, vol. 21, no. 4, pp. 829–839, 1973.
[163]
N. Jackman, A. Ishii, and R. Bansal, “Oligodendrocyte development and myelin biogenesis: parsing out the roles of glycosphingolipids,” Physiology, vol. 24, no. 5, pp. 290–297, 2009.
[164]
J. M. Boggs, W. Gao, J. Zhao, H. J. Park, Y. Liu, and A. Basu, “Participation of galactosylceramide and sulfatide in glycosynapses between oligodendrocyte or myelin membranes,” FEBS Letters, vol. 584, no. 9, pp. 1771–1778, 2010.
[165]
E. N. Maldonado, N. L. Alderson, P. V. Monje, P. M. Wood, and H. Hama, “FA2H is responsible for the formation of 2-hydroxy galactolipids in peripheral nervous system myelin,” Journal of Lipid Research, vol. 49, no. 1, pp. 153–161, 2008.
[166]
R. J. Stewart and J. M. Boggs, “A carbohydrate-carbohydrate interaction between galactosylceramide-containing liposomes and cerebroside sulfate-containing liposomes: dependence on the glycolipid ceramide composition,” Biochemistry, vol. 32, no. 40, pp. 10666–10674, 1993.
[167]
L. Saadat, J. L. Dupree, J. Kilkus et al., “Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice,” GLIA, vol. 58, no. 4, pp. 391–398, 2010.
[168]
S. Schulte and W. Stoffel, “Ceramide UDPgalactosyltransferase from myelinating rat brain: purification, cloning, and expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 21, pp. 10265–10269, 1993.
[169]
G. Tennekoon, M. Zaruba, and J. Wolinsky, “Topography of cerebroside sulfotransferase in Golgi-enriched vesicles from rat brain,” Journal of Cell Biology, vol. 97, no. 4, pp. 1107–1112, 1983.
[170]
K. N. J. Burger, P. Van Der Bijl, and G. Van Meer, “Topology of sphingolipid galactosyltransferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis,” Journal of Cell Biology, vol. 133, no. 1, pp. 15–28, 1996.
[171]
H. Sprong, B. Kruithof, R. Leijendekker, J. W. Slot, G. Van Meer, and P. Van Der Sluijs, “UDP-galactose: ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum,” The Journal of Biological Chemistry, vol. 273, no. 40, pp. 25880–25888, 1998.
[172]
S. I. Chisada, Y. Yoshimura, K. Sakaguchi et al., “Zebrafish and mouse α2,3-sialyltransferases responsible for synthesizing GM4 ganglioside,” The Journal of Biological Chemistry, vol. 284, no. 44, pp. 30534–30546, 2009.
[173]
B. R. Mullin, D. H. Patrick, C. M. B. Poore, and M. T. Smith, “Prevention of experimental allergic encephalomyelitis by ganglioside G(M4),” Brain Research, vol. 296, no. 1, pp. 174–176, 1984.
[174]
P. Paul, Y. Kamisaka, D. L. Marks, and R. E. Pagano, “Purification and characterization of UDP-glucose:ceramide glucosyltransferase from rat liver Golgi membranes,” The Journal of Biological Chemistry, vol. 271, no. 4, pp. 2287–2293, 1996.
[175]
S. Ichikawa, H. Sakiyama, G. Suzuki, K. I. Hidari, and Y. Hirabayashi, “Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 22, p. 12654, 1996.
[176]
D. L. Marks, K. Wu, P. Paul, Y. Kamisaka, R. Watanabe, and R. E. Pagano, “Oligomerization and topology of the Golgi membrane protein glucosylceramide synthase,” The Journal of Biological Chemistry, vol. 274, no. 1, pp. 451–456, 1999.
[177]
D. L. Marks, M. Dominguez, K. Wu, and R. E. Pagano, “Identification of active site residues in glucosylceramide synthase: a nucleotide-binding/catalytic motif conserved with processive β-glycosyltransferases,” The Journal of Biological Chemistry, vol. 276, no. 28, pp. 26492–26498, 2001.
[178]
H. Coste, M. B. Martel, and R. Got, “Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands,” Biochimica et Biophysica Acta, vol. 858, no. 1, pp. 6–12, 1986.
[179]
D. Jeckel, “Lactosylceramide is synthesized in the lumen of the Golgi apparatus,” FEBS Letters, vol. 342, no. 1, pp. 91–96, 1994.
[180]
A. Van Helvoort, A. J. Smith, H. Sprong et al., “MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine,” Cell, vol. 87, no. 3, pp. 507–517, 1996.
[181]
G. Van Meer, D. Halter, H. Sprong, P. Somerharju, and M. R. Egmond, “ABC lipid transporters: extruders, flippases, or flopless activators?” FEBS Letters, vol. 580, no. 4, pp. 1171–1177, 2006.
[182]
D. Halter, S. Neumann, S. M. Van Dijk et al., “Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis,” Journal of Cell Biology, vol. 179, no. 1, pp. 101–115, 2007.
[183]
M. Chalat, I. Menon, Z. Turan, and A. K. Menon, “Reconstitution of glucosylceramide flip-flop across endoplasmic reticulum: implications for mechanism of glycosphingolipid biosynthesis,” The Journal of Biological Chemistry, vol. 287, pp. 15523–15532, 2012.
[184]
G. D'Angelo, E. Polishchuk, G. D. Tullio et al., “Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide,” Nature, vol. 449, no. 7158, pp. 62–67, 2007.
[185]
Y. Yildiz, H. Matern, B. Thompson et al., “Mutation of β-glucosidase 2 causes glycolipid storage disease and impaired male fertility,” Journal of Clinical Investigation, vol. 116, no. 11, pp. 2985–2994, 2006.
[186]
K. Furukawa, A. Tsuchida, and K. Furukawa, “Biosynthesis of glycolipids,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 105–114, Elsevier, Oxford, UK, 2007.
[187]
M. Takizawa, T. Nomura, E. Wakisaka et al., “cDNA cloning and expression of human lactosylceramide synthase,” Biochimica et Biophysica Acta, vol. 1438, no. 2, pp. 301–304, 1999.
[188]
Y. Hirabayashi, A. Hyogo, T. Nakao et al., “Isolation and characterization of extremely minor gangliosides, G(M1b) and G(D1α), in adult bovine brains as developmentally regulated antigens,” The Journal of Biological Chemistry, vol. 265, no. 14, pp. 8144–8151, 1990.
[189]
T. Yamashita, A. Hashiramoto, M. Haluzik et al., “Enhanced insulin sensitivity in mice lacking ganglioside GM3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3445–3449, 2003.
[190]
M. Saito and K. Sugiyama, “Tissue-specific expression of c-series gangliosides in the extraneural system,” Biochimica et Biophysica Acta, vol. 1474, no. 1, pp. 88–92, 2000.
[191]
Y. Hirabayashi, T. Nakao, F. Irie, V. P. Whittaker, K. Kon, and S. Ando, “Structural characterization of a novel cholinergic neuron-specific ganglioside in bovine brain,” The Journal of Biological Chemistry, vol. 267, no. 18, pp. 12973–12978, 1992.
[192]
F. Irie, K. I. P. Jwa Hidari, T. Tai, Y. T. Li, Y. Seyama, and Y. Hirabayashi, “Biosynthetic pathway for a new series of gangliosides, GT1aα and GQ1bα,” FEBS Letters, vol. 351, no. 2, pp. 291–294, 1994.
[193]
E. R. Sturgill, K. Aoki, P. H. Lopez et al., “Biosynthesis of the major brain gangliosides GD1a and GT1b,” Glycobiology, vol. 10, pp. 1289–1301, 2012.
[194]
R. L. Proia, “Glycosphingolipid functions: insights from engineered mouse models,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1433, pp. 879–883, 2003.
[195]
S. Ichikawa, N. Nakajo, H. Sakiyama, and Y. Hirabayashi, “A mouse B16 melanoma mutant deficient in glycolipids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 7, pp. 2703–2707, 1994.
[196]
K. Takamiya, A. Yamamoto, K. Furukawa et al., “Complex gangliosides are essential in spermatogenesis of mice: possible roles in the transport of testosterone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 21, pp. 12147–12152, 1998.
[197]
K. A. Sheikh, J. Sun, Y. Liu et al., “Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7532–7537, 1999.
[198]
S. Chiavegatto, J. Sun, R. J. Nelson, and R. L. Schnaar, “A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice,” Experimental Neurology, vol. 166, no. 2, pp. 227–234, 2000.
[199]
J. Zhao, K. Furukawa, S. Fukumoto et al., “Attenuation of interleukin 2 signal in the spleen cells of complex ganglioside-lacking mice,” The Journal of Biological Chemistry, vol. 274, no. 20, pp. 13744–13747, 1999.
[200]
M. Nagafuku, K. Okuyama, Y. Onimaru et al., “CD4 and CD8 T cells require different membrane gangliosides for activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. E336–E342, 2012.
[201]
G. Wu, Z. H. Lu, N. Kulkarni, R. Amin, and R. W. Ledeen, “Mice lacking major brain gangliosides develop parkinsonism,” Neurochemical Research, vol. 36, pp. 1706–1714, 2011.
[202]
J. S. Schneider, A. Kean, and L. DiStefano, “G(M1) ganglioside rescues substantia nigra pars compacta neurons and increases dopamine synthesis in residual nigrostriatal dopaminergic neurons in MPTP-treated mice,” Journal of Neuroscience Research, vol. 42, no. 1, pp. 117–123, 1995.
[203]
Z. Martinez, M. Zhu, S. Han, and A. L. Fink, “GM1 specifically interacts with α-synuclein and inhibits fibrillation,” Biochemistry, vol. 46, no. 7, pp. 1868–1877, 2007.
[204]
H. Kawai, M. L. Allende, R. Wada et al., “Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures,” The Journal of Biological Chemistry, vol. 276, no. 10, pp. 6885–6888, 2001.
[205]
T. Yamashita, Y. P. Wu, R. Sandhoff et al., “Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2725–2730, 2005.
[206]
T. S. Worgall, “Sphingolipid synthetic pathways are major regulators of lipid homeostasis,” in Sphingolipids and Metabolic Disease, L. A. Cowart, Ed., vol. 721, pp. 139–148, Springer, New York, NY, USA, 2011.
[207]
D. K. Breslow and J. S. Weissman, “Membranes in balance: mechanisms of sphingolipid homeostasis,” Molecular Cell, vol. 40, no. 2, pp. 267–279, 2010.
[208]
R. K. Yu, E. Bieberich, T. Xia, and G. Zeng, “Regulation of ganglioside biosynthesis in the nervous system,” Journal of Lipid Research, vol. 45, no. 5, pp. 783–793, 2004.
[209]
S. Uemura, S. Yoshida, F. Shishido, and J. I. Inokuchi, “The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity,” Molecular Biology of the Cell, vol. 20, no. 13, pp. 3088–3100, 2009.
[210]
E. Bieberich and R. K. Yu, “Multi-enzyme kinetic analysis of glycolipid biosynthesis,” Biochimica et Biophysica Acta, vol. 1432, no. 1, pp. 113–124, 1999.
[211]
G. van Echten-Deckert and M. Guravi, “Golgi localization of glycosyltransferases involved in ganglioside biosynthesis,” Current Drug Targets, vol. 9, no. 4, pp. 282–291, 2008.
[212]
E. Bieberich, S. MacKinnon, J. Silva et al., “Regulation of ganglioside biosynthesis by enzyme complex formation of glycosyltransferases,” Biochemistry, vol. 41, no. 38, pp. 11479–11487, 2002.
[213]
S. Roseman, “The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion,” Chemistry and Physics of Lipids, vol. 5, no. 1, pp. 270–297, 1970.
[214]
W. Spessott, P. M. Crespo, J. L. Daniotti, and H. J. Maccioni, “Glycosyltransferase complexes improve glycolipid synthesis,” FEBS Lett, vol. 586, no. 16, pp. 2346–2350, 2012.
[215]
C. G. Giraudo, J. L. Daniotti, and H. J. F. Maccioni, “Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1625–1630, 2001.
[216]
C. G. Giraudo and H. J. F. Maccioni, “Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells,” The Journal of Biological Chemistry, vol. 278, no. 41, pp. 40262–40271, 2003.
[217]
E. Monti, M. T. Bassi, N. Papini et al., “Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane,” Biochemical Journal, vol. 349, no. 1, pp. 343–351, 2000.
[218]
Y. Wang, K. Yamaguchi, T. Wada et al., “A close association of the ganglioside-specific sialidase Neu3 with caveolin in membrane microdomains,” The Journal of Biological Chemistry, vol. 277, no. 29, pp. 26252–26259, 2002.
[219]
M. Miyata, M. Kambe, O. Tajima et al., “Membrane sialidase NEU3 is highly expressed in human melanoma cells promoting cell growth with minimal changes in the composition of gangliosides,” Cancer Science, vol. 102, pp. 2139–2149, 2011.
[220]
J. Wang, G. Wu, T. Miyagi, Z. H. Lu, and R. W. Ledeen, “Sialidase occurs in both membranes of the nuclear envelope and hydrolyzes endogenous GD1a,” Journal of Neurochemistry, vol. 111, no. 2, pp. 547–554, 2009.
[221]
M. Ito, “Degradation of glycolipids,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 193–208, Elsevier, Oxford, UK, 2007.
[222]
T. Kolter and K. Sandhoff, “Lysosomal degradation of membrane lipids,” FEBS Letters, vol. 584, no. 9, pp. 1700–1712, 2010.
[223]
W. Furst and K. Sandhoff, “Activator proteins and topology of lysosomal sphingolipid catabolism,” Biochimica et Biophysica Acta, vol. 1126, no. 1, pp. 1–16, 1992.
[224]
A. C. Johansson, H. Appelqvist, C. Nilsson, K. K?gedal, K. Roberg, and K. ?llinger, “Regulation of apoptosis-associated lysosomal membrane permeabilization,” Apoptosis, vol. 15, no. 5, pp. 527–540, 2010.
[225]
W. M?bius, E. van Donselaar, Y. Ohno-Iwashita et al., “Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway,” Traffic, vol. 4, no. 4, pp. 222–231, 2003.
[226]
H. D. Gallala and K. Sandhoff, “Biological function of the cellular lipid BMP-BMP as a key activator for cholesterol sorting and membrane digestion,” Neurochemical Research, vol. 36, pp. 1594–1600, 2011.
[227]
M. Scherer and G. Schmitz, “Metabolism, function and mass spectrometric analysis of bis(monoacylglycero)phosphate and cardiolipin,” Chemistry and Physics of Lipids, vol. 164, no. 6, pp. 556–562, 2011.
[228]
T. Kobayashi, M. H. Beuchat, J. Chevallier et al., “Separation and characterization of late endosomal membrane domains,” The Journal of Biological Chemistry, vol. 277, no. 35, pp. 32157–32164, 2002.
[229]
P. Saftig and J. Klumperman, “Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function,” Nature Reviews Molecular Cell Biology, vol. 10, no. 9, pp. 623–635, 2009.
[230]
P. Saftig, B. Schr?der, and J. Blanz, “Lysosomal membrane proteins: life between acid and neutral conditions,” Biochemical Society Transactions, vol. 38, no. 6, pp. 1420–1423, 2010.
[231]
R. Henning and W. Stoffel, “Glycosphingolipids in lysosomal membranes,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 354, no. 7, pp. 760–770, 1973.
[232]
E. M. Meier, G. Schwarzmann, W. Furst, and K. Sandhoff, “The human G(M2) activator protein. A substrate specific cofactor of β-hexosaminidase A,” The Journal of Biological Chemistry, vol. 266, no. 3, pp. 1879–1887, 1991.
[233]
T. Kolter and K. Sandhoff, “Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 81–103, 2005.
[234]
S. Locatelli-Hoops, N. Remmel, R. Klingenstein et al., “Saposin A mobilizes lipids from low cholesterol and high bis(monoacylglycerol)phosphate-containing membranes: patient variant saposin a lacks lipid extraction capacity,” The Journal of Biological Chemistry, vol. 281, no. 43, pp. 32451–32460, 2006.
[235]
N. Remmel, S. Locatelli-Hoops, B. Breiden, G. Schwarzmann, and K. Sandhoff, “Saposin B mobilizes lipids from cholesterol-poor and bis(monoacylglycero) phosphate-rich membranes at acidic pH: unglycosylated patient variant saposin B lacks lipid-extraction capacity,” FEBS Journal, vol. 274, no. 13, pp. 3405–3420, 2007.
[236]
N. Werth, C. G. Schuette, G. Wilkening, T. Lemm, and K. Sandhoff, “Degradation of membrane-bound ganglioside GM2 by β-hexosaminidase A. Stimulation by GM2 activator protein and lysosomal lipids,” The Journal of Biological Chemistry, vol. 276, no. 16, pp. 12685–12690, 2001.
[237]
G. Wilkening, T. Linke, G. Uhlhorn-Dierks, and K. Sandhoff, “Degradation of membrane-bound ganglioside GM1: stimulation by bis(monoacylglycero)phosphate and the activator proteins SAP-B and GM2-AP,” The Journal of Biological Chemistry, vol. 275, no. 46, pp. 35814–35819, 2000.
[238]
S. T. Hepbildikler, R. Sandhoff, M. K?lzer, R. L. Proia, and K. Sandhoff, “Physiological substrates for human lysosomal β-hexosaminidase S,” The Journal of Biological Chemistry, vol. 277, no. 4, pp. 2562–2572, 2002.
[239]
R. Sandhoff, S. T. Hepbildikler, R. Jennemann et al., “Kidney sulfatides in mouse models of inherited glycosphingolipid disorders: determination by nano-electrospray ionization tandem mass spectrometry,” The Journal of Biological Chemistry, vol. 277, no. 23, pp. 20386–20398, 2002.
[240]
M. Abdul-Hammed, B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff, “Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion,” Journal of Lipid Research, vol. 51, no. 7, pp. 1747–1760, 2010.
[241]
H. Bruhn, “A short guided tour through functional and structural features of saposin-like proteins,” Biochemical Journal, vol. 389, no. 2, pp. 249–257, 2005.
[242]
E. Mehl and H. Jatzkewitz, “A cerebrosidesulfatase from swine kidney,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 339, no. 1, pp. 260–276, 1964.
[243]
A. Vogel, G. Schwarzmann, and K. Sandhoff, “Glycosphingolipid specificity of the human sulfatide activator protein,” European Journal of Biochemistry, vol. 200, no. 2, pp. 591–597, 1991.
[244]
G. Fischer and H. Jatzkewitz, “The activator of cerebroside sulphatase. Binding studies with enzyme and substrate demonstrating the detergent function of the activator protein,” Biochimica et Biophysica Acta, vol. 481, no. 2, pp. 561–572, 1977.
[245]
E. Conzelmann, M. Lee-Vaupel, and K. Sandhoff, “The physiological role of activator proteins for lysosomal glycolipid degradation,” in Lipid Storage Disorders: Biological and Medical Aspects, R. Salvayre, L. Douste-Blazy, and S. Gatt, Eds., vol. 150, pp. 323–332, Pergamon Press, New York, NY, USA, 1988.
[246]
B. Schmid, B. C. Paton, K. Sandhoff, and K. Harzer, “Metabolism of G(M1) ganglioside in cultured skin fibroblasts: anomalies in gangliosidoses, sialidoses, and sphingolipid activator protein (SAP, saposin) 1 and prosaposin deficient disorders,” Human Genetics, vol. 89, no. 5, pp. 513–518, 1992.
[247]
V. E. Ahn, K. F. Faull, J. P. Whitelegge, A. L. Fluharty, and G. G. Privé, “Crystal structure of saposin B reveals a dimeric shell for lipid binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 38–43, 2003.
[248]
K. A. Kretz, G. S. Carson, S. Morimoto, Y. Kishimoto, A. L. Fluharty, and J. S. O'Brien, “Characterization of a mutation in a family with saposin B deficiency: a glycosylation site defect,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 7, pp. 2541–2544, 1990.
[249]
Y. Sun, D. P. Witte, H. Ran et al., “Neurological deficits and glycosphingolipid accumulation in saposin B deficient mice,” Human Molecular Genetics, vol. 17, no. 15, pp. 2345–2356, 2008.
[250]
E. Conzelmann and K. Sandhoff, “Purification and characterization of an activator protein for the degradation of glycolipids G(M2) and G(A2) by hexosaminidase A,” Hoppe-Seyler's Zeitschrift für Physiologische Chemie, vol. 360, no. 12, pp. 1837–1849, 1979.
[251]
E. Conzelmann and K. Sandhoff, “AB variant of infantile Gm2 gangliosidosis. Deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside Gm2 and glycolipid Ga2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 8, pp. 3979–3983, 1978.
[252]
C. S. Wright, S. C. Li, and F. Rastinejad, “Crystal structure of human GM2-activator protein with a novel β-cup topology,” Journal of Molecular Biology, vol. 304, no. 3, pp. 411–422, 2000.
[253]
C. S. Wright, Q. Zhao, and F. Rastinejad, “Structural analysis of lipid complexes of GM2-activator protein,” Journal of Molecular Biology, vol. 331, no. 4, pp. 951–964, 2003.
[254]
M. Wendeler, J. Hoernschemeyer, D. Hoffmann, T. Kolter, G. Schwarzmann, and K. Sandhoff, “Photoaffinity labelling of the Human GM2-activator protein Mechanistic insight into ganglioside GM2 degradation,” European Journal of Biochemistry, vol. 271, no. 3, pp. 614–627, 2004.
[255]
J. D. Mathias, Y. Ran, J. D. Carter, and G. E. Fanucci, “Interactions of the GM2 activator protein with phosphatidylcholine bilayers: a site-directed spin-labeling power saturation study,” Biophysical Journal, vol. 97, no. 5, pp. 1436–1444, 2009.
[256]
Y. Ran and G. E. Fanucci, “A dansyl fluorescence-based assay for monitoring kinetics of lipid extraction and transfer,” Analytical Biochemistry, vol. 382, no. 2, pp. 132–134, 2008.
[257]
Y. Ran and G. E. Fanucci, “Ligand extraction properties of the GM2 activator protein and its interactions with lipid vesicles,” Biophysical Journal, vol. 97, no. 1, pp. 257–266, 2009.
[258]
A. Giehl, T. Lemm, O. Bartelsen, K. Sandhoff, and A. Blume, “Interaction of the GM2-activator protein with phospholipid-ganglioside bilayer membranes and with monolayers at the air-water interface,” European Journal of Biochemistry, vol. 261, no. 3, pp. 650–658, 1999.
[259]
C. S. Wright, L. Z. Mi, S. Lee, and F. Rastinejad, “Crystal structure analysis of phosphatidylcholine-GM2-activator product complexes: evidence for hydrolase activity,” Biochemistry, vol. 44, no. 41, pp. 13510–13521, 2005.
[260]
B. Rigat, D. Reynaud, N. Smiljanic-Georgijev, and D. Mahuran, “The GM2 activator protein, a novel inhibitor of platelet-activating factor,” Biochemical and Biophysical Research Communications, vol. 258, no. 2, pp. 256–259, 1999.
[261]
B. Rigat, H. Yeger, D. Shehnaz, and D. Mahuran, “GM2 activator protein inhibits platelet activating factor signaling in rats,” Biochemical and Biophysical Research Communications, vol. 385, no. 4, pp. 576–580, 2009.
[262]
C. S. Wright, L. Z. Mi, and F. Rastinejad, “Evidence for lipid packaging in the crystal structure of the GM2-activator complex with platelet activating factor,” Journal of Molecular Biology, vol. 342, no. 2, pp. 585–592, 2004.
[263]
K. Higashi, H. Kubo, H. Watanabe, K. Fujimori, T. Mikami, and H. Kaneko, “Adipokine ganglioside GM2 activator protein stimulates insulin secretion,” FEBS Letters, vol. 585, pp. 2587–2591, 2011.
[264]
E. Starostina, A. Xu, H. Lin, and C. W. Pikielny, “A Drosophila protein family implicated in pheromone perception is related to Tay-Sachs GM2-activator protein,” The Journal of Biological Chemistry, vol. 284, no. 1, pp. 585–594, 2009.
[265]
A. F. Bruce, M. P. Gares, M. E. Selkirk, and K. Gounaris, “Functional characterisation of a nematode secreted GM2-activator protein,” Molecular and Biochemical Parasitology, vol. 147, no. 2, pp. 224–229, 2006.
[266]
L. Leon, R. V. Tatituri, R. Grenha et al., “Saposins utilize two strategies for lipid transfer and CD1 antigen presentation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 4357–4364, 2012.
[267]
T. Kolter, F. Winau, U. E. Schaible, M. Leippe, and K. Sandhoff, “Lipid-binding proteins in membrane digestion, antigen presentation, and antimicrobial defense,” The Journal of Biological Chemistry, vol. 280, no. 50, pp. 41125–41128, 2005.
[268]
Y. O. Suzuki A and E. Nanba, “β-Galactosidase Deficiency (β-Galactosidosis): GM1 gangliosidosis and morquio B disease,” in The Metabolic and Molecular Bases of Inherited Disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, Eds., vol. 3, pp. 3775–3809, McGraw-Hill, 2001.
[269]
U. Ohto, K. Usui, T. Ochi, K. Yuki, Y. Satow, and T. Shimizu, “Crystal structure of human beta-galactosidase: structural basis of Gm1 gangliosidosis and morquio B diseases,” The Journal of Biological Chemistry, vol. 287, pp. 1801–1812, 2012.
[270]
A. Hinek, M. Rabinovitch, F. Keeley, Y. Okamura-Oho, and J. Callahan, “The 67-kD elastin/laminin-binding protein is related to an enzymatically inactive, alternatively spliced form of β-galactosidase,” Journal of Clinical Investigation, vol. 91, no. 3, pp. 1198–1205, 1993.
[271]
A. D'Azzo and E. Bonten, “Molecular mechanisms of pathogenesis in a glycosphingolipid and a glycoprotein storage disease,” Biochemical Society Transactions, vol. 38, no. 6, pp. 1453–1457, 2010.
[272]
K. Sango, S. Yamanaka, A. Hoffmann et al., “Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism,” Nature Genetics, vol. 11, no. 2, pp. 170–176, 1995.
[273]
H. J. Kytzia and K. Sandhoff, “Evidence for two different active sites on human β-hexosaminidase A. Interaction of G(M2) activator protein with β-hexosaminidase A,” The Journal of Biological Chemistry, vol. 260, no. 12, pp. 7568–7572, 1985.
[274]
T. Maier, N. Strater, C. G. Schuette, R. Klingenstein, K. Sandhoff, and W. Saenger, “The X-ray crystal structure of human β-hexosaminidase B provides new insights into Sandhoff disease,” Journal of Molecular Biology, vol. 328, no. 3, pp. 669–681, 2003.
[275]
B. L. Mark, D. J. Mahuran, M. M. Cherney, D. Zhao, S. Knapp, and M. N. G. James, “Crystal Structure of Human β-Hexosaminidase B: understanding the Molecular Basis of Sandhoff and Tay-Sachs Disease,” Journal of Molecular Biology, vol. 327, no. 5, pp. 1093–1109, 2003.
[276]
M. L. Schultz, L. Tecedor, M. Chang, and B. L. Davidson, “Clarifying lysosomal storage diseases,” Trends in Neurosciences, vol. 34, no. 8, pp. 401–410, 2011.
[277]
Y. H. Xu, S. Barnes, Y. Sun, and G. A. Grabowski, “Multi-system disorders of glycosphingolipid and ganglioside metabolism,” Journal of Lipid Research, vol. 51, no. 7, pp. 1643–1675, 2010.
[278]
A. Ballabio and V. Gieselmann, “Lysosomal disorders: from storage to cellular damage,” Biochimica et Biophysica Acta, vol. 1793, no. 4, pp. 684–696, 2009.
[279]
O. Staretz-Chacham, T. C. Lang, M. E. Lamarca, D. Krasnewich, and E. Sidransky, “Lysosomal storage disorders in the newborn,” Pediatrics, vol. 123, no. 4, pp. 1191–1207, 2009.
[280]
S. U. Walkley and M. T. Vanier, “Secondary lipid accumulation in lysosomal disease,” Biochimica et Biophysica Acta, vol. 1793, no. 4, pp. 726–736, 2009.
[281]
T. Kolter and K. Sandhoff, “Sphingolipid metabolism diseases,” Biochimica et Biophysica Acta, vol. 1758, no. 12, pp. 2057–2079, 2006.
[282]
S. U. Walkley, “Pathogenic cascades in lysosomal disease—why so complex?” Journal of Inherited Metabolic Disease, vol. 32, no. 2, pp. 181–189, 2009.
[283]
T. M. Cox and M. B. Cachon-Gonzalez, “The cellular pathology of lysosomal diseases,” The Journal of Pathology, vol. 226, pp. 241–254, 2012.
[284]
F. M. Platt and R. H. Lachmann, “Treating lysosomal storage disorders: current practice and future prospects,” Biochimica et Biophysica Acta, vol. 1793, no. 4, pp. 737–745, 2009.
[285]
P. Leinekugel, S. Michel, E. Conzelmann, and K. Sandhoff, “Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease,” Human Genetics, vol. 88, no. 5, pp. 513–523, 1992.
[286]
E. Conzelmann and K. Sandhoff, “Partial enzyme deficiencies: residual activities and the development of neurological disorders,” Developmental Neuroscience, vol. 6, no. 1, pp. 58–71, 1983.
[287]
M. Zervas, K. Dobrenis, and S. U. Walkley, “Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 1, pp. 49–64, 2001.
[288]
M. Zervas, K. L. Somers, M. A. Thrall, and S. U. Walkley, “Critical role for glycosphingolipids in Niemann-Pick disease type C,” Current Biology, vol. 11, no. 16, pp. 1283–1287, 2001.
[289]
N. H. Pipalia, C. C. Cosner, A. Huang et al., “Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5620–5625, 2011.
[290]
D. Campos and M. Monaga, “Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms,” Metabolic Brain Disease, vol. 27, pp. 121–129, 2012.
[291]
M. Aridor and L. A. Hannan, “Tarffic jam: a compendium of human diseases that affect intracellular transport processes,” Traffic, vol. 1, no. 11, pp. 836–851, 2000.
[292]
M. Aridor and L. A. Hannan, “Traffic Jams II: an update of diseases of intracellular transport,” Traffic, vol. 3, no. 11, pp. 781–790, 2002.
[293]
M. Jeyakumar, I. Williams, D. A. Smith, T. M. Cox, and F. M. Platt, “Critical role of iron in the pathogenesis of the murine gangliosidoses,” Neurobiology of Disease, vol. 34, no. 3, pp. 406–416, 2009.
[294]
C. Settembre, A. Fraldi, D. C. Rubinsztein, and A. Ballabio, “Lysosomal storage diseases as disorders of autophagy,” Autophagy, vol. 4, no. 1, pp. 113–114, 2008.
[295]
N. Brunetti-Pierri and F. Scaglia, “GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects,” Molecular Genetics and Metabolism, vol. 94, no. 4, pp. 391–396, 2008.
[296]
J. Caffey, “Gargoylism (Hunter-Hurler disease, dysostosis multiplex, lipochondrodystrophy); prenatal and neonatal bone lesions and their early postnatal evolution,” Bulletin of the Hospital for Joint Diseases, vol. 12, no. 2, pp. 38–66, 1951.
[297]
B. H. Landing, F. N. Silverman, J. M. Craig, M. D. Jacoby, M. E. Lahey, and D. L. Chadwick, “Familial neurovisceral lipidosis. An analysis of eight cases of a syndrome previously reported as “hurler-variant,” “pseudo-hurler,” and “tay-sachs disease with visceral involvement”,” American Journal of Diseases of Children, vol. 108, pp. 503–522, 1964.
[298]
M. Jeyakumar, R. Thomas, E. Elliot-Smith et al., “Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis,” Brain, vol. 126, no. 4, pp. 974–987, 2003.
[299]
G. Wu, Z. H. Lu, J. Wang et al., “Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA 20, a membrane-permeant analog of GM1,” Journal of Neuroscience, vol. 25, no. 47, pp. 11014–11022, 2005.
[300]
A. Tessitore, M. D. P. Martin, R. Sano et al., “GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis,” Molecular Cell, vol. 15, no. 5, pp. 753–766, 2004.
[301]
T. Okumiya, H. Sakuraba, R. Kase, and T. Sugiura, “Imbalanced substrate specificity of mutant β-galactosidase in patients with Morquio B disease,” Molecular Genetics and Metabolism, vol. 78, no. 1, pp. 51–58, 2003.
[302]
Y. Suzuki, “Chemical chaperone therapy for GM1-gangliosidosis,” Cellular and Molecular Life Sciences, vol. 65, no. 3, pp. 351–353, 2008.
[303]
A. Caciotti, M. A. Donati, A. d'Azzo et al., “The potential action of galactose as a "chemical chaperone": increase of beta galactosidase activity in fibroblasts from an adult GM1-gangliosidosis patient,” European Journal of Paediatric Neurology, vol. 13, no. 2, pp. 160–164, 2009.
[304]
B. A. Rigat, M. B. Tropak, J. Buttner et al., “Evaluation of N-nonyl-deoxygalactonojirimycin as a pharmacological chaperone for human GM1 gangliosidosis leads to identification of a feline model suitable for testing enzyme enhancement therapy,” Molecular Genetics and Metabolism, vol. 107, no. 1-2, pp. 203–212, 2012.
[305]
R. A. Gravel, M. M. Kaback, R. L. Proia, K. Sandhoff, and K. Suzuki, “The GM2 gangliosidoses,” in The Metabolic and Molecular Bases of Inherited Disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, Eds., vol. 3, pp. 3827–3877, McGraw-Hill, New York, NY, USA, 2001.
[306]
H. E. Saqr, D. K. Pearl, and A. J. Yates, “A review and predictive models of ganglioside uptake by biological membranes,” Journal of Neurochemistry, vol. 61, no. 2, pp. 395–411, 1993.
[307]
G. Schwarzmann, P. Hoffmann-Bleihauer, J. Schubert, K. Sandhoff, and D. Marsh, “Incorporation of ganglioside analogues into fibroblast cell membranes. A spin-label study,” Biochemistry, vol. 22, no. 21, pp. 5041–5048, 1983.
[308]
C. Eggeling, C. Ringemann, R. Medda et al., “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature, vol. 457, no. 7233, pp. 1159–1162, 2009.
[309]
H. J. Kytzia, U. Hinrichs, I. Maire, K. Suzuki, and K. Sandhoff, “Variant of GM2-gangliosidosis with hexosaminidase A having a severely changed substrate specificity,” The EMBO Journal, vol. 2, no. 7, pp. 1201–1205, 1983.
[310]
K. Suzuki and M. T. Vanier, “Biochemical and molecular aspects of late-onset GM2-gangliosidosis: B1 variant as a prototype,” Developmental Neuroscience, vol. 13, no. 4-5, pp. 288–294, 1991.
[311]
Y. Ben-Yoseph, J. E. Reid, B. Shapiro, and H. L. Nadler, “Diagnosis and carrier detection of Tay-Sachs disease: direct determination of hexosaminidase A using 4-methylumbelliferyl derivatives of β-N-acetylglucosamine-6-sulfate and β-N-acetylgalactosamine-6-sulfate,” American Journal of Human Genetics, vol. 37, no. 4, pp. 733–740, 1985.
[312]
W. Fuchs, R. Navon, M. M. Kaback, and H. Kresse, “Tay-Sachs disease: one-step assay of β-N-acetylhexosaminidase in serum with a sulphated chromogenic substrate,” Clinica Chimica Acta, vol. 133, no. 3, pp. 253–261, 1983.
[313]
Y. Liu, A. Hoffmann, A. Grinberg et al., “Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 15, pp. 8138–8143, 1997.
[314]
D. P. Purpura and K. Suzuki, “Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease,” Brain Research, vol. 116, no. 1, pp. 1–21, 1976.
[315]
S. Neuenhofer, E. Conzelmann, and G. Schwarzmann, “Occurrence of lysoganglioside lyso-G(M2) (II3-neu5Ac-gangliotriaosylsphingosine) in G(M2) gangliodosis brain,” Biological Chemistry Hoppe-Seyler, vol. 367, no. 3, pp. 241–244, 1986.
[316]
T. Kobayashi, I. Goto, S. Okada, T. Orii, K. Ohno, and T. Nakano, “Accumulation of lysosphingolipids in tissues from patients with GM1 and GM2 gangliosidoses,” Journal of Neurochemistry, vol. 59, no. 4, pp. 1452–1458, 1992.
[317]
T. Kodama, T. Togawa, T. Tsukimura et al., “Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease,” PLoS One, vol. 6, Article ID e29074, 2011.
[318]
T. Kolter, “A view on sphingolipids and disease,” Chemistry and Physics of Lipids, vol. 164, no. 6, pp. 590–606, 2011.
[319]
Y. Liu, R. Wada, H. Kawai et al., “A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder,” Journal of Clinical Investigation, vol. 103, no. 4, pp. 497–505, 1999.
[320]
F. Norflus, C. J. Tifft, M. P. McDonald et al., “Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice,” Journal of Clinical Investigation, vol. 101, no. 9, pp. 1881–1888, 1998.
[321]
D. Tsuji, H. Akeboshi, K. Matsuoka et al., “Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis,” Annals of Neurology, vol. 69, no. 4, pp. 691–701, 2011.
[322]
M. Jeyakumar, J. P. Lee, N. R. Sibson et al., “Neural stem cell transplantation benefits a monogenic neurometabolic disorder during the symptomatic phase of disease,” Stem Cells, vol. 27, no. 9, pp. 2362–2370, 2009.
[323]
M. Masciullo, M. Santoro, A. Modoni et al., “Substrate reduction therapy with miglustat in chronic GM2 gangliosidosis type Sandhoff: results of a 3-year follow-up,” Journal of Inherited Metabolic Disease. In press.
[324]
F. M. Platt and M. Jeyakumar, “Substrate reduction therapy,” Acta Paediatrica, vol. 97, no. 457, pp. 88–93, 2008.
[325]
J. T. R. Clarke, D. J. Mahuran, S. Sathe et al., “An open-label Phase I/II clinical trial of pyrimethamine for the treatment of patients affected with chronic GM2 gangliosidosis (Tay-Sachs or Sandhoff variants),” Molecular Genetics and Metabolism, vol. 102, no. 1, pp. 6–12, 2011.
[326]
K. S. Bateman, M. M. Cherney, D. J. Mahuran, M. Tropak, and M. N. G. James, “Crystal structure of β-hexosaminidase B in complex with pyrimethamine, a potential pharmacological chaperone,” Journal of Medicinal Chemistry, vol. 54, no. 5, pp. 1421–1429, 2011.
[327]
L. Batista, F. Miller, C. Clave et al., “Induced secretion of β-hexosaminidase by human brain endothelial cells: a novel approach in Sandhoff disease?” Neurobiology of Disease, vol. 37, no. 3, pp. 656–660, 2010.
[328]
M. Jeyakumar, D. A. Smith, I. M. Williams et al., “NSAIDs increase survival in the Sandhoff disease mouse: synergy with N-butyldeoxynojirimycin,” Annals of Neurology, vol. 56, no. 5, pp. 642–649, 2004.
[329]
K. Yanagisawa, “Pathological significance of ganglioside clusters in Alzheimer's disease,” Journal of Neurochemistry, vol. 116, no. 5, pp. 806–812, 2011.
[330]
R. K. Yu, Y. T. Tsai, and T. Ariga, “Functional roles of gangliosides in neurodevelopment: an overview of recent advances,” Neurochemical Research, vol. 37, pp. 1230–1244, 2012.
[331]
A. Prinetti, S. Prioni, N. Loberto et al., “Aberrant glycosphingolipid expression and membrane organization in tumor cells: consequences on tumor-host interactions,” Advances in Experimental Medicine and Biology, vol. 705, pp. 643–667, 2011.
[332]
D. F. Alonso, L. E. Fernandez, M. R. Gabri et al., “NGcGM3 ganglioside: a privileged target for cancer vaccines,” Clinical and Developmental Immunology, vol. 2010, Article ID 814397, 8 pages, 2010.
[333]
J. Heimburg-Molinaro, M. Lum, G. Vijay, M. Jain, A. Almogren, and K. Rittenhouse-Olson, “Cancer vaccines and carbohydrate epitopes,” Vaccine, vol. 29, pp. 8802–8826, 2011.
[334]
L. G. Durrant, P. Noble, and I. Spendlove, “Immunology in the clinic review series, focus on cancer: glycolipids as targets for tumour immunotherapy,” Clinical & Experimental Immunology, vol. 167, pp. 206–215, 2012.
[335]
A. Uncini, “A common mechanism and a new categorization for anti-ganglioside antibody-mediated neuropathies,” Experimental Neurology, vol. 235, pp. 513–516, 2012.
[336]
J. S. Schneider, “The therapeutic role of gangliosides in neurological disorders,” CNS Drugs, vol. 1, pp. 213–222, 1994.
[337]
A. C. Cuello, “Gangliosides, NGF, brain aging and disease: a mini-review with personal reflections,” Neurochemical Research, vol. 37, pp. 1256–1260, 2012.
[338]
L. Svennerholm, G. Br?ne, I. Karlsson, A. Lekman, I. Ramstr?m, and C. Wikkels?, “Alzheimer disease—effect of continuous intracerebroventricular treatment with GM1 ganglioside and a systematic activation programme,” Dementia and Geriatric Cognitive Disorders, vol. 14, no. 3, pp. 128–136, 2002.
[339]
J. I. Inokuchi, “Inhibition of ganglioside biosynthesis as a novel therapeutic approach in insulin resistance,” Handbook of Experimental Pharmacology, vol. 203, pp. 165–178, 2011.
[340]
R. J. Thomas, “Receptor mimicry as novel therapeutic treatment for biothreat agents,” Bioengineered Bugs, vol. 1, no. 1, pp. 17–30, 2010.
[341]
A. Bachis and I. Mocchetti, “Semisynthetic sphingoglycolipid LIGA20 is neuroprotective against human immunodeficiency virus-gp120-mediated apoptosis,” Journal of Neuroscience Research, vol. 83, no. 5, pp. 890–896, 2006.
[342]
C. B. Zeller and R. B. Marchase, “Gangliosides as modulators of cell function,” American Journal of Physiology, vol. 262, no. 6, pp. C1341–C1355, 1992.
[343]
N. V. Prokazova, N. N. Samovilova, E. V. Gracheva, and N. K. Golovanova, “Ganglioside GM3 and its biological functions,” Biochemistry, vol. 74, no. 3, pp. 235–249, 2009.
[344]
R. W. Ledeen and G. Wu, “In search of a solution to the sphinx-like riddle of GM1,” Neurochemical Research, vol. 35, no. 12, pp. 1867–1874, 2010.
[345]
A. Regina Todeschini and S. I. Hakomori, “Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains,” Biochimica et Biophysica Acta, vol. 1780, no. 3, pp. 421–433, 2008.
[346]
S. I. Hakomori, “Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility,” FEBS Letters, vol. 584, no. 9, pp. 1901–1906, 2010.
[347]
P. H. Lopez and R. L. Schnaar, “Gangliosides in cell recognition and membrane protein regulation,” Current Opinion in Structural Biology, vol. 19, no. 5, pp. 549–557, 2009.
[348]
R. L. Schnaar, “Glycolipid-mediated cell-cell recognition in inflammation and nerve regeneration,” Archives of Biochemistry and Biophysics, vol. 426, no. 2, pp. 163–172, 2004.
[349]
R. W. Ledeen, G. S. Wu, S. Andre et al., “Beyond glycoproteins as galectin counterreceptors: tumor-effector T cell growth control via ganglioside GM1,” Annals of the New York Academy of Sciences, vol. 1253, pp. 206–221, 2012.
[350]
J. Kopitz, C. Von Reitzenstein, M. Burchert, M. Cantz, and H. J. Gabius, “Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture,” The Journal of Biological Chemistry, vol. 273, no. 18, pp. 11205–11211, 1998.
[351]
S. Hakomori, “Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization,” Glycoconjugate Journal, vol. 21, no. 3-4, pp. 125–137, 2004.
[352]
S. Hakomori, “Carbohydrate-Carbohydrate interaction in basic cell biology,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 787–803, Elsevier, Oxford, UK, 2007.
[353]
I. Bucior and M. M. Burger, “Carbohydrate-carbohydrate interactions in cell recognition,” Current Opinion in Structural Biology, vol. 14, no. 5, pp. 631–637, 2004.
[354]
N. Kojima and S. Hakomori, “Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (G(M3) as a basis for specific cellular recognition between lymphoma and melanoma cells,” The Journal of Biological Chemistry, vol. 264, no. 34, pp. 20159–20162, 1989.
[355]
R. L. Schnaar, “Brain gangliosides in axon-myelin stability and axon regeneration,” FEBS Letters, vol. 584, no. 9, pp. 1741–1747, 2010.
[356]
L. Cantu, E. Del Favero, S. Sonnino, and A. Prinetti, “Gangliosides and the multiscale modulation of membrane structure,” Chemistry and Physics of Lipids, vol. 164, pp. 796–810, 2011.
[357]
J. Inokuchi and K. Kabayama, “Receptor modifications in glycobiology,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 733–743, Elsevier, Oxford, UK, 2007.
[358]
R. L. Schnaar, “Neural functions of glycolipids,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 4, pp. 323–337, Elsevier, Oxford, UK, 2007.
[359]
C. L. Schengrund, “Lipid rafts: keys to neurodegeneration,” Brain Research Bulletin, vol. 82, no. 1-2, pp. 7–17, 2010.
[360]
U. Coskun, M. Grzybek, D. Drechsel, and K. Simons, “Regulation of human EGF receptor by lipids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 9044–9048, 2011.
[361]
S. Sonnino, L. Mauri, V. Chigorno, and A. Prinetti, “Gangliosides as components of lipid membrane domains,” Glycobiology, vol. 17, no. 1, pp. 1r–13r, 2007.
[362]
K. Simons and J. L. Sampaio, “Membrane organization and lipid rafts,” Cold Spring Harbor Perspectives in Biology, vol. 3, Article ID a004697, 2011.
[363]
K. Simons and M. J. Gerl, “Revitalizing membrane rafts: new tools and insights,” Nature Reviews Molecular Cell Biology, vol. 11, no. 10, pp. 688–699, 2010.
[364]
D. Lingwood and K. Simons, “Lipid rafts as a membrane-organizing principle,” Science, vol. 327, no. 5961, pp. 46–50, 2010.
[365]
J. Lippincott-Schwartz and R. D. Phair, “Lipids and cholesterol as regulators of traffic in the endomembrane system,” Annual Review of Biophysics, vol. 39, no. 1, pp. 559–578, 2010.
[366]
H. D. Gallala and K. Sandhoff, “Principles of microdomain formation in biological membranes—are there lipid liquid ordered domains in living cellular membranes?” Trends in Glycoscience and Glycotechnology, vol. 20, no. 116, pp. 277–295, 2008.
[367]
J. Van Rheenen, E. M. Achame, H. Janssen, J. Calafat, and K. Jalink, “PIP2 signaling in lipid domains: a critical re-evaluation,” The EMBO Journal, vol. 24, no. 9, pp. 1664–1673, 2005.
[368]
L. J. Pike, “Rafts defined: a report on the keystone symposium on lipid rafts and cell function,” Journal of Lipid Research, vol. 47, no. 7, pp. 1597–1598, 2006.
[369]
D. Lichtenberg, F. M. Go?i, and H. Heerklotz, “Detergent-resistant membranes should not be identified with membrane rafts,” Trends in Biochemical Sciences, vol. 30, no. 8, pp. 430–436, 2005.
[370]
H. Heerklotz, “Triton promotes domain formation in lipid raft mixtures,” Biophysical Journal, vol. 83, no. 5, pp. 2693–2701, 2002.
[371]
M. Heffer-Lauc, G. Lauc, L. Nimrichter, S. E. Fromholt, and R. L. Schnaar, “Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation,” Biochimica et Biophysica Acta, vol. 1686, no. 3, pp. 200–208, 2005.
[372]
M. Heffer-Lauc, G. Lauc, L. Nimrichter, S. E. Fromholt, and R. L. Schnaar, “Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation,” Biochimica et Biophysica Acta, vol. 1686, no. 3, pp. 200–208, 2005.
[373]
M. Brameshuber, J. Weghuber, V. Ruprecht et al., “Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane,” The Journal of Biological Chemistry, vol. 285, no. 53, pp. 41765–41771, 2010.
[374]
T. Janas, “Membrane oligo- and polysialic acids,” Biochimica et Biophysica Acta, vol. 1808, pp. 2923–2932, 2011.
[375]
B. C. Salazar, S. Casta?o, J. C. S?nchez, M. Romero, and E. Recio-Pinto, “Ganglioside GD1a increases the excitability of voltage-dependent sodium channels,” Brain Research, vol. 1021, no. 2, pp. 151–158, 2004.
[376]
A. Varki and P. Gagneux, “Multifarious roles of sialic acids in immunity,” Annals of the New York Academy of Sciences, vol. 1253, pp. 16–36, 2012.
[377]
K. Hanada, “Sphingolipids in infectious diseases,” Japanese Journal of Infectious Diseases, vol. 58, no. 3, pp. 131–148, 2005.
[378]
U. Neu, J. Bauer, and T. Stehle, “Viruses and sialic acids: rules of engagement,” Current Opinion in Structural Biology, vol. 21, pp. 610–618, 2011.
[379]
J. Sánchez and J. Holmgren, “Cholera toxin—a foe & a friend,” Indian Journal of Medical Research, vol. 133, no. 2, pp. 153–163, 2011.
[380]
N. Roche, J. ?ngstr?m, M. Hurtig, T. Larsson, T. Borén, and S. Teneberg, “Helicobacter pylori and complex gangliosides,” Infection and Immunity, vol. 72, no. 3, pp. 1519–1529, 2004.
[381]
A. Varki, “Sialic acids in human health and disease,” Trends in Molecular Medicine, vol. 14, no. 8, pp. 351–360, 2008.
[382]
P. R. Crocker, J. C. Paulson, and A. Varki, “Siglecs and their roles in the immune system,” Nature Reviews Immunology, vol. 7, no. 4, pp. 255–266, 2007.
[383]
J. C. Paulson, M. S. Macauley, and N. Kawasaki, “Siglecs as sensors of self in innate and adaptive immune responses,” Annals of the New York Academy of Sciences, vol. 1253, pp. 37–48, 2012.
[384]
G. Stafford, S. Roy, K. Honma, and A. Sharma, “Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast!,” Molecular Oral Microbiology, vol. 27, pp. 11–22, 2012.
[385]
K. D. Erickson, R. L. Garcea, and B. Tsai, “Ganglioside GT1b is a putative host cell receptor for the Merkel cell polyomavirus,” Journal of Virology, vol. 83, no. 19, pp. 10275–10279, 2009.
[386]
T. Haselhorst, F. E. Fleming, J. C. Dyason et al., “Sialic acid dependence in rotavirus host cell invasion,” Nature Chemical Biology, vol. 5, no. 2, pp. 91–93, 2009.
[387]
E. C. Nilsson, R. J. Storm, J. Bauer et al., “The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis,” Nature Medicine, vol. 17, no. 1, pp. 105–109, 2011.
[388]
K. Furukawa, O. Tajima, T. Okuda, N. Tokuda, and K. Furukawa, “Knockout mice and glycolipids,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 4, pp. 149–157, Elsevier, Oxford, UK, 2007.
[389]
G. Wu, X. Xie, Z. H. Lu, and R. W. Ledeen, “Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 1, pp. 307–312, 2001.
[390]
K. Furukawa, Y. Ohmi, Y. Ohkawa et al., “Regulatory mechanisms of nervous systems with glycosphingolipids,” Neurochemical Research, vol. 36, pp. 1578–1586, 2011.
[391]
F. Sabourdy, B. Kedjouar, S. C. Sorli et al., “Functions of sphingolipid metabolism in mammals - Lessons from genetic defects,” Biochimica et Biophysica Acta, vol. 1781, no. 4, pp. 145–183, 2008.
[392]
R. P. Rao and J. K. Acharya, “Sphingolipids and membrane biology as determined from genetic models,” Prostaglandins and Other Lipid Mediators, vol. 85, no. 1-2, pp. 1–16, 2008.
[393]
S. Matuoka, M. Akiyama, H. Yamada, K. Tsuchihashi, and S. Gasa, “Phase behavior in multilamellar vesicles of DPPC containing ganglioside GM3 with a C18:1 sphingoid base and a 24:0 acyl chain (GM3(18,24)) observed by X-ray diffraction,” Chemistry and Physics of Lipids, vol. 123, no. 1, pp. 19–29, 2003.
[394]
T. Wennekes, R. J. B. H. N. Van Den Berg, R. G. Boot, G. A. Van Der Marel, H. S. Overkleeft, and J. M. F. G. Aerts, “Glycosphingolipids—nature, function, and pharmacological modulation,” Angewandte Chemie, vol. 48, no. 47, pp. 8848–8869, 2009.
[395]
H. Shibuya, K. Hamamura, H. Hotta et al., “Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD32012,” Cancer Science, vol. 103, no. 9, pp. 1656–1664.
[396]
Y. Dong, K. Ikeda, K. Hamamura et al., “GM1/GD1/GA1 synthase expression results in the reduced cancer phenotypes with modulation of composition and raft-localization of gangliosides in a melanoma cell line,” Cancer Science, vol. 101, no. 9, pp. 2039–2047, 2010.
[397]
J. I. Inokuchi, “Chapter 22 neurotrophic and neuroprotective actions of an enhancer of ganglioside biosynthesis,” International Review of Neurobiology, vol. 85, pp. 319–336, 2009.
[398]
G. Wu, Z. H. Lu, X. Xie, B. Li, and R. W. Ledeen, “Mutant NG108-15 cells (NG-CR72) deficient in GM1 synthase respond aberrantly to axonogenic stimuli and are vulnerable to calcium-induced apoptosis: they are rescued with LIGA-20,” Journal of Neurochemistry, vol. 76, no. 3, pp. 690–702, 2001.
[399]
T. Kolter, T. M. Magin, and K. Sandhoff, “Biomolecule function: no reliable prediction from cell culture,” Traffic, vol. 1, no. 10, pp. 803–804, 2000.
[400]
M. R. Bond, H. Zhang, J. Kim et al., “Metabolism of diazirine-modified N-acetylmannosamine analogues to photo-cross-linking sialosides,” Bioconjugate Chemistry, vol. 22, pp. 1811–1823, 2011.
[401]
H. Kayser, R. Zeitler, C. Kannicht, D. Grunow, R. Nuck, and W. Reutter, “Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors,” The Journal of Biological Chemistry, vol. 267, no. 24, pp. 16934–16938, 1992.
[402]
P. Palestini, M. Pitto, G. Tedeschi et al., “Tubulin anchoring to glycolipid-enriched, detergent-resistant domains of the neuronal plasma membrane,” The Journal of Biological Chemistry, vol. 275, no. 14, pp. 9978–9985, 2000.
[403]
M. Panasiewicz, J. Mieczkowski, H. Domek, and T. Pacuszka, “HPLC-based procedure for the preparation of carbene-generating photoreactive GM3 and GM1 ganglioside derivatives radioiodinated to high specific radioactivity with chloramine T as an oxidant,” Analytical Biochemistry, vol. 340, no. 2, pp. 373–375, 2005.
[404]
P. Zimmermann, R. Bommer, T. Bar, and R. R. Schmidt, “Azidosphingosine glycosylation in glycosphingolipid synthesis,” Journal of Carbohydrate Chemistry, vol. 7, no. 2, pp. 435–452, 1988.
[405]
R. R. Schmid and X. Zhu, “Glycosyl trichloroacetimidates,” in Glycoscience, B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds., pp. 452–542, Springer, Berlin, Germany, 2008.
[406]
H. Ando and M. Kiso, “Selective α-Sialylation,” in Glycoscience, B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds., pp. 1315–1359, Springer, Berlin, Germany, 2008.
[407]
H. A. Chokhawala and X. Chen, “Enzymatic approaches to O-glycoside introduction: glycosyltransferases,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 1, pp. 415–451, Elsevier, Oxford, UK, 2007.
[408]
O. Blixt and N. Razi, “Enzymatic glycosylation by transferases,” in Glycoscience, B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds., pp. 1362–1385, Springer, Berlin, Germany, 2008.
[409]
J. R. Rich, A. M. Cunningham, M. Gilbert, and S. G. Withers, “Glycosphingolipid synthesis employing a combination of recombinant glycosyltransferases and an endoglycoceramidase glycosynthase,” Chemical Communications, vol. 47, pp. 10806–10808, 2011.
[410]
S. Fort, L. Birikaki, M. P. Dubois, T. Antoine, E. Samain, and H. Driguez, “Biosynthesis of conjugatable saccharidic moieties of GM2 and GM3 gangliosides by engineered E. coli,” Chemical Communications, no. 20, pp. 2558–2560, 2005.
[411]
M. Gilbert, M. F. Karwaski, S. Bernatchez et al., “The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide,” The Journal of Biological Chemistry, vol. 277, no. 1, pp. 327–337, 2002.
[412]
N. Fierfort and E. Samain, “Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides,” Journal of Biotechnology, vol. 134, no. 3-4, pp. 261–265, 2008.
[413]
T. Antoine, A. Heyraud, C. Bosso, and E. Samain, “Highly efficient biosynthesis of the oligosaccharide moiety of the GD3 ganglioside by using metabolically engineered Escherichia coli,” Angewandte Chemie, vol. 44, no. 9, pp. 1350–1352, 2005.
[414]
B. Priem, M. Gilbert, W. W. Wakarchuk, A. Heyraud, and E. Samain, “A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria,” Glycobiology, vol. 12, no. 4, pp. 235–240, 2002.
[415]
T. Antoine, B. Priem, A. Heyraud et al., “Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli,” ChemBioChem, vol. 4, no. 5, pp. 406–412, 2003.
[416]
Y. Shimura, J. Suzuki, M. Muraoka, M. C. Kasuya, K. Matsuoka, and K. Hatanaka, “Large scale biosynthesis of ganglioside analogues by RERF-LC-AI cells cultured in HYPERFlask,” Preparative Biochemistry and Biotechnology, vol. 42, pp. 378–392, 2012.
[417]
R. Ghidoni, G. Sala, and A. Giuliani, “Use of sphingolipid analogs: benefits and risks,” Biochimica et Biophysica Acta, vol. 1439, no. 1, pp. 17–39, 1999.
[418]
G. Schwarzmann, “A simple and novel method for tritium labeling of gangliosides and other sphingolipids,” Biochimica et Biophysica Acta, vol. 529, no. 1, pp. 106–114, 1978.
[419]
S. Sonnino, M. Nicolini, and V. Chigorno, “Preparation of radiolabeled gangliosides,” Glycobiology, vol. 6, no. 5, pp. 479–487, 1996.
[420]
G. Schwarzmann, “Uptake and metabolism of exogenous glycosphingolipids by cultured cells,” Seminars in Cell and Developmental Biology, vol. 12, no. 2, pp. 163–171, 2001.
[421]
S. I. Hakomori, “Structure and function of glycosphingolipids and sphingolipids: recollections and future trends,” Biochimica et Biophysica Acta, vol. 1780, no. 3, pp. 325–346, 2008.
[422]
S. I. Hakomori, “Release of carbohydrates from sphingoglycolipid by osmium-catalyzed periodate oxidation followed by treatment with mild alkali,” Journal of Lipid Research, vol. 7, no. 6, pp. 789–792, 1966.
[423]
H. Wiegandt and H. W. Bücking, “Carbohydrate components of extraneuronal gangliosides from bovine and human spleen, and bovine kidney,” European Journal of Biochemistry, vol. 15, no. 2, pp. 287–292, 1970.
[424]
N. Nagahori, M. Abe, and S. I. Nishimura, “Structural and functional glycosphingolipidomics by glycoblotting with an aminooxy-functionalized gold nanoparticle,” Biochemistry, vol. 48, no. 3, pp. 583–594, 2009.
[425]
S. C. Li, R. Degasperi, J. E. Muldrey, and Y. T. Li, “A unique glycosphingolipid-splitting enzyme (ceramide-glycanase from leech) cleaves the linkage between the oligosaccharide and the ceramide,” Biochemical and Biophysical Research Communications, vol. 141, no. 1, pp. 346–352, 1986.
[426]
Y. T. Li, C. W. Chou, S. C. Li, U. Kobayashi, Y. H. Ishibashi, and M. Ito, “Preparation of homogenous oligosaccharide chains from glycosphingolipids,” Glycoconjugate Journal, vol. 26, no. 8, pp. 929–933, 2009.
[427]
S. Neuenhofer, G. Schwarzmann, H. Egge, and K. Sandhoff, “Synthesis of lysogangliosides,” Biochemistry, vol. 24, no. 2, pp. 525–532, 1985.
[428]
G. Schwarzmann and K. Sandhoff, “Lysogangliosides: synthesis and use in preparing labeled gangliosides,” Methods in Enzymology, vol. 138, pp. 319–341, 1987.
[429]
T. Ando, S. C. Li, M. Ito, and Y. T. Li, “Facile method for the preparation of lyso-GM1 and lyso-GM2,” Journal of Chromatography A, vol. 1078, no. 1-2, pp. 193–195, 2005.
[430]
E. Arigi, O. Blixt, K. Buschard, H. Clausen, and S. B. Levery, “Design of a covalently bonded glycosphingolipid microarray,” Glycoconjugate Journal, vol. 29, pp. 1–12, 2012.
[431]
Y. Tagawa, W. Laroy, L. Nimrichter et al., “Anti-ganglioside antibodies bind with enhanced affinity to gangliosides containing very long chain fatty acids,” Neurochemical Research, vol. 27, no. 7-8, pp. 847–855, 2002.
[432]
F. Knoll, T. Kolter, and K. Sandhoff, “Sphingolipid photoaffinity labels,” Methods in Enzymology, vol. 311, pp. 568–600, 1999.
[433]
B. Maggio, J. Albert, and R. K. Yu, “Thermodynamic-geometric correlations for the morphology of self-assembled structures of glycosphingolipids and their mixtures with dipalmitoylphosphatidylcholine,” Biochimica et Biophysica Acta, vol. 945, no. 2, pp. 145–160, 1988.
[434]
S. Sonnino, L. Cantù, M. Corti, D. Acquotti, and B. Venerando, “Aggregative properties of gangliosides in solution,” Chemistry and Physics of Lipids, vol. 71, no. 1, pp. 21–45, 1994.
[435]
A. Prinetti, L. Mauri, V. Chigorno, and S. Sonnino, “Lipid membrane domains in glycobiology,” in Comprehensive Glycoscience, J. P. Kamerling, G. J. Boons, Y. C. Lee, A. Suzuki, N. Taniguchi, and A. G. J. Voragen, Eds., vol. 3, pp. 697–730, Elsevier, Oxford, UK, 2007.
[436]
B. Ulrich-Bott and H. Wiegandt, “Micellar properties of glycosphingolipids in aqueous media,” Journal of Lipid Research, vol. 25, no. 11, pp. 1233–1245, 1984.
[437]
G. Lauc and M. Heffer-Lauc, “Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins,” Biochimica et Biophysica Acta, vol. 1760, no. 4, pp. 584–602, 2006.
[438]
R. Callies, G. Schwarzmann, and K. Radsak, “Characterization of the cellular binding of exogenous gangliosides,” European Journal of Biochemistry, vol. 80, no. 2, pp. 425–432, 1977.
[439]
J. A. M. Rasmussen and A. Hermetter, “Chemical synthesis of fluorescent glycero- and sphingolipids,” Progress in Lipid Research, vol. 47, no. 6, pp. 436–460, 2008.
[440]
R. Olshefski and S. Ladisch, “Synthesis, shedding, and intercellular transfer of human medulloblastoma gangliosides: abrogation by a new inhibitor of glucosylceramide synthase,” Journal of Neurochemistry, vol. 70, no. 2, pp. 467–472, 1998.
[441]
S. Ladisch, B. Gillard, C. Wong, and L. Ulsh, “Shedding and immunoregulatory activity of YAC-1 lymphoma cell gangliosides,” Cancer Research, vol. 43, no. 8, pp. 3808–3813, 1983.
[442]
R. Li and S. Ladisch, “Shedding of human neuroblastoma gangliosides,” Biochimica et Biophysica Acta, vol. 1083, no. 1, pp. 57–64, 1991.
[443]
G. Schwarzmann, M. Wendeler, and K. Sandhoff, “Synthesis of novel NBD-GM1 and NBD-GM2 for the transfer activity of GM2-activator protein by a FRET-based assay system,” Glycobiology, vol. 15, no. 12, pp. 1302–1311, 2005.