Optimization of gear ratio with the objectives of fuel consumption reduction and vehicle longitudinal performance improvement has been the subject of many studies for years. Finding a strategy for changing gears with specific control objectives, especially in the design of vehicles equipped with Continuously Variable Transition system (CVT), which has advantage of arbitrary selection of gear ratio, has been the aim of some recent researches. Optimal control theory has rarely been used in the previous control approaches applied to such systems due to the limitations in the use of fast computational systems. The aim of this study is to design the aforementioned gear ratio change strategy and related control rules on the basis of optimal control. A driver model is also designed for the simulation of driving cycle using MATLAB Simulink Toolbar. Results of implementing optimal control rules in vehicle longitudinal movement simulation with the aim of fuel consumption reduction are finally represented. The presented method has the remarkable advantage of considerable fuel consumption reduction in comparison to other proposed approaches for gear ratio change strategies. 1. Introduction Continuously variable transmission (CVT) is an attractive technology and has become more practical with recent improvements in the technology. CVT is effective in achieving continuously smooth shifting and enables the engine to operate in its most efficient state. CVT has now reached a level that permits a large-scale usage of these devices even in a full-size passenger car class. Maximum torques of approximately 300?Nm can be handled with push belts (cf. Gesenhaus, 2000, or Goppelt, 2000). Other systems (e.g., toroidal drives), which cover even larger torque ranges, have been proposed as well. Although the efficiencies of CVT are inherently lower than those of cog wheel gear boxes, a more efficient total-system behavior can be obtained by shifting the engine operating points for a certain demanded power towards higher loads and lower speeds. A reliable method of control system design is usually trial and error in which different iterative methods are used for determining design parameters of an acceptable system. Appropriate performance of the system is usually introduced by some characteristics such as rising time, settling time, and overshoot or with some frequency characteristics such as phase margin, gain margin, and band width. With this method for multi-input multioutput systems, different criteria or performance characteristics for achieving the technological requirements
References
[1]
R. Kazemi, R. Marzooghi, and S. M. Ansari Movahhed, “A tool for dynamic design of power train via modularity patterning,” in Proceedings of the International Conference of Iranian Society of Mechanical Engineering (ISME '02), 2002.
[2]
M. R. Peterson and J. M. Starly, “Nonlinear Vehicle Performance Simulation with Test Correction and Sensitivity Analysis,” SAE 960521.
[3]
F. Xie, J. Wang, and Y. Wang, “Modelling and co-simulation based on AMESim and Simulink for light passenger car with dual state CVT,” in Proceedings of the International Workshop on Automobile, Power and Energy Engineering (APEE '11), pp. 363–368, April 2011.
[4]
R. Kazemi, M. Kabganiyan, and M. Rajayi, “Nonlinear robust control of engine torque to the vehicle slip control,” in Proceedings of the International Conference of Iranian Society of Mechanical Engineering (ISME '02), 2002.
[5]
M. Zhou, X. Wang, and Y. Zhou, “Modeling and simulation of continuously variable transmission for passenger car,” in Proceedings of the 1st International Forum On Strategic Technology (IFOST '06), pp. 100–103, October 2006.
[6]
R. Pfiffner, Optimal Operation of CT-Based Powertrains [Ph.D. Dissertation], Swiss Federal Institute of Technology, Zurich, Switzerland, 2001.
[7]
L. Kong and R. G. Parker, “Steady mechanics of layered, multi-band belt drives used in continuously variable transmissions (CVT),” Mechanism and Machine Theory, vol. 43, no. 2, pp. 171–185, 2008.
[8]
R. Krick, J. Tolstrup, A. Appelles, S. Henke, and M. Thumm, “The relevance of the phosphatidylinositolphosphat-binding motif FRRGT of Atg18 and Atg21 for the CVT pathway and autophagy,” FEBS Letters, vol. 580, no. 19, pp. 4632–4638, 2006.
[9]
R. Krick, J. Tolstrup, A. Appelles, S. Henke, and M. Thumm, “The relevance of the phosphatidylinositolphosphat-binding motif FRRGT of Atg18 and Atg21 for the CVT pathway and autophagy,” FEBS Letters, vol. 580, no. 19, pp. 4632–4638, 2006.
[10]
F. Xie, J. Wang, and Y. Wang, “Modelling and co-simulation based on AMESim and Simulink for light passenger car with dual state CVT,” Procedia Engineering, vol. 16, pp. 363–368, 2011.
[11]
G. Mantriota, “Performances of a parallel infinitely variable transmissions with a type II power flow,” Mechanism and Machine Theory, vol. 37, no. 6, pp. 555–578, 2002.
[12]
N. Srivastava and I. Haque, “Transient dynamics of metal V-belt CVT: effects of band pack slip and friction characteristic,” Mechanism and Machine Theory, vol. 43, no. 4, pp. 459–479, 2008.
[13]
N. Srivastava and I. Haque, “A review on belt and chain continuously variable transmissions (CVT): dynamics and control,” Mechanism and Machine Theory, vol. 44, no. 1, pp. 19–41, 2009.
[14]
K. Hyunso and L. Jaeshin, “Analysis of belt behavior and slip characteristics for a metal V-belt CVT,” Mechanism and Machine Theory, vol. 29, no. 6, pp. 865–876, 1994.
[15]
D. Kirk, Optimal Control Theory: An Introduction, Prentice-Hill, Englewood Cliffs, NJ, USA, 1974.
[16]
N. Srivastava and I. Haque, “A review on belt and chain continuously variable transmissions (CVT): dynamics and control,” Mechanism and Machine Theory, vol. 44, no. 1, pp. 19–41, 2009.