全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

History of the Tether Concept and Tether Missions: A Review

DOI: 10.1155/2013/502973

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper introduces history of space tethers, including tether concepts and tether missions, and attempts to provide a source of references for historical understanding of space tethers. Several concepts of space tethers since the original concept has been conceived are listed in the literature, as well as a summary of interesting applications, and a research of space tethers is given. With the aim of implementing scientific experiments in aerospace, several space tether missions which have been delivered for aerospace application are introduced in the literature. 1. Introduction With original concepts of “space elevator” or “beanstalk,” space tethers were developed to transport payloads up and down without any propellant. A space tether is a kind of long cable ranging from a few hundred meters to many kilometers, which uses series of thin strands of high-strength fibre to couple spacecraft to each other or to other masses, and it also provides a mechanical connection which enables the transfer of energy and momentum from one object to the other. Since the conception of space tether came up in the 19th century, it has not yet been fully utilised. Space tethers can be used in many applications, including the study of plasma physics and electrical generation in the upper atmosphere, the orbiting or deorbiting of space vehicles and payload, for interplanetary propulsion, and potentially for specialised missions, such as asteroid rendezvous, or in extreme form as the well-publicized space elevator. With the development of space technology, space tethers should be widely used in space exploration [1]. Space tethers have a long history since the original idea was proposed in 1895, and research work of space tethers quickly expanded, especially the research on dynamics and control of space tethers, which are the fundamentally aspects. Furthermore, a series of tether missions have been delivered for aerospace applications in the last century. The aims of these missions are mostly for scientific experiments of space tethers’ research [1–5]. 2. History of the Tether Concept The original idea of an orbital tower was first conceived by Konstantin Tsiolkovsky in 1895 [6, 7]. Inspired by the Eiffel Tower, Tsiolkovsky imagined a giant tower reaching space with a “celestial castle” at the top, and the free-floating spindle-shaped tower—“Tsiolkovsky” tower, which is reaching from the surface of Earth to GSO. His proposal for a “Shuttle-borne Skyhook” for low orbital altitude research marked the advent of tethered satellite systems (TSS). It would be supported in

References

[1]  M. P. Cartmell and D. J. McKenzie, “A review of space tether research,” Progress in Aerospace Sciences, vol. 44, no. 1, pp. 1–21, 2008.
[2]  A. K. Misra and V. J. Modi, “Dynamics and control of tether connected two-body systems—a brief review,” International Astronautical Congress, pp. 219–236, 1982.
[3]  A. K. Misra and V. J. Modi, “A survey on the dynamics and control of tethered satellite systems,” in Proceedings of NASA/AIAA/PSN International Conference on Tethers, Arlington, Va, USA, September 1986.
[4]  M. J. Eiden and M. P. Cartmell, “Overcoming the challenges: tether systems roadmap for space transportation applications,” in Proceedings of the AIAA/ICAS International Air and Space Symposium and Exposition, 2003.
[5]  K. D. Kumar, “Review of dynamics and control of nonelectrodynamic tethered satellite systems,” Journal of Spacecraft and Rockets, vol. 43, no. 4, pp. 705–720, 2006.
[6]  J. A. Angelo, Space Technology, Greenwood Publishing, Westport, Conn, USA, 2003.
[7]  M. V. Pelt, Space Tethers and Space Elevators, Springer, Berlin, Germany, 2009.
[8]  D. F. Dickinson and W. C. Straka, “Tethered satellite antenna arrays for passive radar systems,” in Proceedings of the IEEE Aerospace Applications Conference Digest, pp. 117–125, February 1990.
[9]  J. A. Carroll and J. C. Oldson, “Tethers for small satellite applications,” in Proceedings of the AIAA/USU Small Satellite Conference, 1995.
[10]  S. Price, Audacious and Outrageous: Space Elevators, NASA Science News, 2000.
[11]  V. V. Beletsky and E. M. Levin, Dynamics of Space Tether Systems, Advances in the Astronautical Sciences, American Astronautical Society, Washington, DC, USA, 1993.
[12]  B. C. Edwards and E. A. Westling, The Space Elevator: A Revolutionary Earth-to-Space Transportation System, Spageo, San Francisco, Calif, USA, 2003.
[13]  M. J. Laine, B. Fawcett, and T. Nugent, Liftport: The Space Elevator-Opening Space to Everyone, Meisha Merlin Publishing, New York, NY, USA, 2006.
[14]  J. D. Isaacs, A. C. Vine, H. Bradner, and G. E. Bachus, “Satellite elongation into a true "sky-hook",” Science, vol. 151, no. 3711, pp. 682–683, 1966.
[15]  P. Ragan and B. Edwards, Leaving the Planet by Space Elevator, Lulu.com, Raleigh, NC, USA, 2006.
[16]  G. Colombo, E. M. Gaposchkin, M. D. Grossi, and G. C. Weiffenbach, “The sky-hook: a shuttle-borne tool for low-orbital-altitude research,” Meccanica, vol. 10, no. 1, pp. 3–20, 1975.
[17]  J. Pearson, “The orbital tower: a spacecraft launcher using the Earth's rotational energy,” Acta Astronautica, vol. 2, no. 9-10, pp. 785–799, 1975.
[18]  H. Moravec, “A non-synchronous orbital skyhook,” Journal of the Astronautical Sciences, vol. 25, no. 4, pp. 307–322, 1977.
[19]  J. Pearson, “Anchored lunar satellites for cislunar transportation and communication,” Journal of the Astronautical Sciences, vol. 27, no. 1, pp. 39–62, 1979.
[20]  G. Tiesenhausen, “Tether in space: birth and growth of a new avenue to space utilization,” Tech. Rep. NASA-TM-82571, NASA, Huntsville, Ala, USA, 1984.
[21]  J. A. Carroll, “Guidebook for analysis of tether applications,” NASA Contractor Report NASA CR-178904, 1985.
[22]  J. A. Carroll, “Tether applications in space transportation,” Acta Astronautica, vol. 13, no. 4, pp. 165–174, 1986.
[23]  M. L. Cosmo and E. C. Lorenzini, Tethers in Space Handbook, NASA Marshall Space Flight Center, Huntsville, Ala, USA, 3rd edition, 1997.
[24]  L. Johnson, B. Gilchrist, R. D. Estes, and E. Lorenzini, “Overview of future NASA tether applications,” Advances in Space Research, vol. 24, no. 8, pp. 1055–1063, 1999.
[25]  J. A. Carroll, Space Transport Development Using Orbital Debris, Tether Applications, Chula Vista, Calif, USA, 2002.
[26]  H. Klinkrad, Space Debris: Models and Risk Analysis, Springer, Berlin, Germany, 2006.
[27]  D. Darling, The Complete Book of Spaceflight: From Apollo 1 to Zero Gravity, John Wiley & Sons, New York, NY, USA, 2002.
[28]  “NASA Gemini 11,” NSSDC ID: 1966-081A, 1966, http://nssdc.gsfc.nasa.gov/.
[29]  T. Furniss, D. Shayler, and M. D. Shayler, Praxis Manned Spaceflight Log 1961–2006, Springer, Berlin, Germany, 2007.
[30]  N. Kawashima, S. Sasaki, K. I. Oyama et al., “Results from a tethered rocket experiment (Charge-2),” Advances in Space Research, vol. 8, no. 1, pp. 197–201, 1988.
[31]  B. N. Maehlum, J. Troim, N. C. Maynard, et al., “Studies of the electrical charging of the tethered electron accelerator mother-daughter pocket maimik,” Geophysical Research Letters, vol. 15, pp. 725–728, 1988.
[32]  W. F. Denig, B. N. Maehlum, and K. A. Svenes, “Review of the maimik rocket experiment,” Space Tethers for Science in the Space Station Era, vol. 2, pp. 443–456, 1989.
[33]  R. J. Nemzek and J. R. Winckler, “Immediate and delayed high-energy electrons due to Echo 7 accelerator operation,” Space Tethers for Science in the Space Station Era, vol. 2, pp. 466–490, 1989.
[34]  H. G. James, “Wave results from OEDIPUS A,” Advances in Space Research, vol. 13, no. 10, pp. 5–13, 1993.
[35]  E. M. Levin, Dynamic Analysis of Space Tether Missions, American Astronautical Society, Washington, DC, USA, 2007.
[36]  P. Prikryl, H. G. James, and D. J. Knudsen, “OEDIPUS-C topside sounding of an auroral E region,” Advances in Space Research, vol. 24, no. 8, pp. 1065–1068, 1999.
[37]  C. Bonifazi, G. Manarini, J. Sabbagh et al., “Tethered-satellite system (TSS): preliminary results on the active experiment core equipment,” Il Nuovo Cimento C, vol. 16, no. 5, pp. 515–538, 1993.
[38]  M. Malerba, “The first mission of the tethered statellite,” Il Nuovo Cimento C, vol. 16, no. 5, pp. 485–494, 1993.
[39]  R. S. Ryan, D. K. Mowery, and D. D. Tomlin, “The Dynamic Phenomena of a Tethered Satellite—NASA’s First Tethered Satellite Mission (TSS-1),” 1993, http://nla.gov.au/nla.cat-vn4066740.
[40]  S. Bergamaschi, F. Bonon, P. Merlina, and M. Morana, “Theoretical and experimental investigation of TSS-1 dynamics,” Acta Astronautica, vol. 34, no. C, pp. 69–82, 1994.
[41]  M. Dobrowolny and N. H. Stone, “A technical overview of TSS-1: the first Tethered-satellite system mission,” Il Nuovo Cimento C, vol. 17, no. 1, pp. 1–12, 1994.
[42]  V. Aguero, P. M. Banks, B. Gilchrist et al., “The Shuttle Electrodynamic Tether System (SETS) on TSS-1,” Il Nuovo Cimento C, vol. 17, no. 1, pp. 49–65, 1994.
[43]  C. George, Tethered Satellite System Reflight (TSS-1R) Post-Flight Engineering Performance Report, Marshall Space Flight Center, Huntsville, Ala, USA, 1996.
[44]  N. H. Stone, W. J. Raitt, and K. H. Wright, “The TSS-1R electrodynamic Tether experiment: scientific and technological results,” Advances in Space Research, vol. 24, no. 8, pp. 1037–1045, 1999.
[45]  W. J. Barnds, S. Coffey, M. Davis, et al., “TiPS: results of a tethered satellite experiment,” in Proceedings of the AASI/AIAA Astrodynamics Conference, 1997.
[46]  E. J. van der Heide and M. Kruijff, “Tethers and debris mitigation,” Acta Astronautica, vol. 48, no. 5-12, pp. 503–516, 2001.
[47]  S. Koss, “Tether deployment mechanism for the advanced tether experiment (ATEX),” in Proceedings of European Space Mechanism and Tribology Symposium, pp. 175–182, 1997.
[48]  R. Osiander, M. A. G. Darrin, and J. Champion, MEMS and Microstructures in Aerospace Applications, CRC Press, Boca Raton, Fla, USA, 2005.
[49]  J. A. Vaughn, L. Curtis, B. E. Gilchrist, S. G. Bilén, and E. C. Lorenzini, “Review of the proseds electrodynamic tether mission development,” in Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2004.
[50]  R. Hoyt, J. Slostad, and R. Twiggs, “The multi-application survivable tether (MAST) experiment,” in Proceedings of the AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, pp. 20–23, 2003.
[51]  S. Dueck, N. Gadhok, M. Kinsner, J. Kraut, T. Tessier, and W. Kinsner, “YES2 DHS: a space tether control subsystem,” in Proceedings of the Canadian Conference on Electrical and Computer Engineering: Toward a Caring and Humane Technology (CCECE '03), pp. 1287–1292, May 2003.
[52]  P. Williams, A. Hyslop, M. Stelzer, and M. Kruijff, “YES2 optimal trajectories in presence of eccentricity and aerodynamic drag,” Acta Astronautica, vol. 64, no. 7-8, pp. 745–769, 2009.
[53]  M. Nohmi, “Mission design of a tethered robot satellite "STARS" for orbital experiment,” in Proceedings of the IEEE International Conference on Control Applications (CCA '09), pp. 1075–1080, July 2009.
[54]  H. A. Fujii, T. Watanabe, H. Kojima et al., “Sounding rocket experiment of bare electrodynamic tether system,” Acta Astronautica, vol. 64, no. 2-3, pp. 313–324, 2009.
[55]  S. Coffey, B. Kelm, A. Hoskin, J. Carroll, and E. Levin, “Tetheres elctrodynamic propulsion CubeSat experiment (TEPCE),” in Proceedings of Air Force Orbital Resources Ionosphere Conference, pp. 12–14, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133