全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Modified Approach to the New Solutions of Generalized mKdV Equation Using -Expansion

DOI: 10.1155/2014/856396

Full-Text   Cite this paper   Add to My Lib

Abstract:

The modified -expansion method is applied for finding new solutions of the generalized mKdV equation. By taking an appropriate transformation, the generalized mKdV equation is solved in different cases and hyperbolic, trigonometric, and rational function solutions are obtained. 1. Introduction The evolutions of the physical, engineering, and other systems always behave nonlinearly; hence many nonlinear evolution equations have been introduced to interpret the phenomena. Many kinds of mathematical methods have been established to investigate the solutions of those nonlinear evolution equations both numerically and asymptotically, while the exact solutions are of particular interests. In recent decades, with the rapid progress of computation methods, many effective calculating approaches have been developed, for example, the tanh-coth expansion [1, 2], -expansion [3, 4], Painlevé expansion [5], Jacobi elliptic function method [6], Hirota bilinear transformation [7], Backlund/Darboux transformation [8, 9], variational method [10], the homogeneous balance method [11], exp-function expansion [12], and so on. However, a unified approach to obtain the complete solutions of the nonlinear evolution equations has not been revealed. Within recent years, a new method called ( )-expansion [13] has been proposed for finding the traveling wave solutions of the nonlinear evolution equations. Many equations have been investigated and many solutions have been found using the method, including KdV equation, Hirota-Satsuma equation [13], coupled Boussinesq equation [14], generalized Bretherton equation [15], the mKdV equation [16], the Burgers-KdV equation, the Benjamin-Bona-Mahony equation [17], the Whitham-Broer-Kaup-like equation [18], the Kolmogorov-Petrovskii-Piskunov equation [19], KdV-Burgers equation [20], and Drinfeld-Sokolov-Satsuma-Hirota equation [21]. The mKdV equation, a modified version of the Korteweg-de Vries (KdV) equation, has been investigated extensively since Zabusky showed how this equation depict the oscillations of a lattice of particles connected by nonlinear springs as the Fermi-Pasta-Ulam (FPU) model [22–25]. Afterwards, this equation has been used to describe the evolution of internal waves at the interface of two layers of equal depth [26]. Generally, the KdV theory describes the weak nonlinearity and weak dispersion while, in the study of nonlinear optics, the complex mKdV equation has even been used to describe the propagation of optical pulses in nematic optical fibers when we go beyond the usual weakly nonlinear limit of Kerr medium [27].

References

[1]  W. Malfliet, “Solitary wave solutions of nonlinear wave equations,” The American Journal of Physics, vol. 60, no. 7, pp. 650–654, 1992.
[2]  A.-M. Wazwaz, “The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1467–1475, 2007.
[3]  M. Wang and X. Li, “Applications of -expansion to periodic wave solutions for a new Hamiltonian amplitude equation,” Chaos, Solitons and Fractals, vol. 24, no. 5, pp. 1257–1268, 2005.
[4]  M. A. Abdou, “The extended -expansion method and its application for a class of nonlinear evolution equations,” Chaos, Solitons and Fractals, vol. 31, no. 1, pp. 95–104, 2007.
[5]  J. Weiss, M. Tabor, and G. Carnevale, “The Painlevé property for partial differential equations,” Journal of Mathematical Physics, vol. 24, no. 3, pp. 522–526, 1983.
[6]  S. Liu, Z. Fu, S. Liu, and Q. Zhao, “Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,” Physics Letters A, vol. 289, no. 1-2, pp. 69–74, 2001.
[7]  R. Hirota, “Exact solution of the korteweg: de vries equation for multiple collisions of solitons,” Physical Review Letters, vol. 27, no. 18, pp. 1192–1194, 1971.
[8]  N. Nirmala and M. Vedan, “A variable coefficient Korteweg: de vries equation: similarity analysis and exact solution. II,” Journal of Mathematical Physics, vol. 27, Article ID 2644, 1986.
[9]  V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, Germany, 1991.
[10]  J.-H. He, “Variational iteration method for autonomous ordinary differential systems,” Applied Mathematics and Computation, vol. 114, no. 2-3, pp. 115–123, 2000.
[11]  M. Wang, Y. Zhou, and Z. Li, “Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,” Physics Letters A, vol. 216, pp. 67–75, 1996.
[12]  A. Y?ld?r?m and Z. P?nar, “Application of the exp-function method for solving nonlinear reaction-diffusion equations arising in mathematical biology,” Computers & Mathematics with Applications, vol. 60, no. 7, pp. 1873–1880, 2010.
[13]  M. Wang, X. Li, and J. Zhang, “The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics,” Physics Letters A, vol. 372, no. 4, pp. 417–423, 2008.
[14]  R. Abazari, “The (G′/G)-expansion method for the coupled Boussinesq equation,” Procedia Engineering, vol. 10, pp. 2845–2850, 2011.
[15]  M. Ali Akbar, N. Hj. Mohd. Ali, and E. M. E. Zayed, “Abundant exact traveling wave solutions of generalized Bretherton equation via improved (G′/G)-expansion method,” Communications in Theoretical Physics, vol. 57, no. 2, pp. 173–178, 2012.
[16]  Y. -L. Zhao, Y. -P. Liu, and Z. -B. Li, “A connection between the (G′/G)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation,” Chinese Physics B, vol. 19, Article ID 030306, 2010.
[17]  I. Aslan, “Exact and explicit solutions to some nonlinear evolution equations by utilizing the (G′/G)-expansion method,” Applied Mathematics and Computation, vol. 215, no. 2, pp. 857–863, 2009.
[18]  Y.-B. Zhou and C. Li, “Application of modified (G′/G)-expansion method to traveling wave solutions for Whitham-Broer-Kaup-like equations,” Communications in Theoretical Physics, vol. 51, no. 4, pp. 664–670, 2009.
[19]  J. Feng, W. Li, and Q. Wan, “Using (G′/G)-expansion method to seek the traveling wave solution of Kolmogorov-Petrovskii-Piskunov equation,” Applied Mathematics and Computation, vol. 217, no. 12, pp. 5860–5865, 2011.
[20]  M. Mizrak and A. Erta?, “Application of (G′/G)-expansion method to the compound KDV-Burgers-type equations,” Mathematical & Computational Applications, vol. 17, no. 1, pp. 18–28, 2012.
[21]  B. Zheng, “Travelling wave solutions of two nonlinear evolution equations by using the (G′/G)-expansion method,” Applied Mathematics and Computation, vol. 217, no. 12, pp. 5743–5753, 2011.
[22]  M. Wadati, “The modified Korteweg-de Vries equation,” vol. 34, pp. 1289–1296, 1973.
[23]  F. Gesztesy and B. Simon, “Constructing solutions of the mKdV-equation,” Journal of Functional Analysis, vol. 89, no. 1, pp. 53–60, 1990.
[24]  Y. Kametaka, “Korteweg-de Vries equation. IV. Simplest generalization,” Proceedings of the Japan Academy, vol. 45, pp. 661–665, 1969.
[25]  S. N. Kruzhkov and A. V. Faminskii, “Generalized solutions of the cauchy problem for the korteweg-de vries equation,” Mathematics of the USSR-Sbornik, vol. 48, no. 2, article 391, 1984.
[26]  J. Yang, “Complete eigenfunctions of linearized integrable equations expanded around a soliton solution,” Journal of Mathematical Physics, vol. 41, no. 9, pp. 6614–6638, 2000.
[27]  R. F. Rodríguez, J. A. Reyes, A. Espinosa-Cerón, J. Fujioka, and B. A. Malomed, “Standard and embedded solitons in nematic optical fibers,” Physical Review E, vol. 68, no. 3, Article ID 036606, 2003.
[28]  R. Fedele, “Envelope solitons versus solitons,” Physica Scripta, vol. 65, no. 6, article 502, 2002.
[29]  Z. T. Fu, Z. Chen, S. K. Liu, and S. D. Liu, “New solutions to generalized mKdV equation,” Communications in Theoretical Physics, vol. 41, no. 1, pp. 25–28, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133