This paper presents a proposition of a new optimization method called Search in Improved Network, which is an extension of the method Search in Modified Network, to calculate the empirical parameters of the Rakhmatov and Vrudhula model for predicting batteries lifetime used in mobile devices. The new method is evaluated according to the following methodology. At first empirical parameters are computed considering the optimization methods Search in Improved Network, Search in Modified Network, and Least Squares, as well as the experimental data obtained from a testbed, considering a Lhition-Ion battery, model BL5F, used in the Nokia N95 cell phone. In a second moment, the Rakhmatov and Vrudhula model is validated for each set of parameters obtained, and the simulated data from the model are compared with a set of experimental data. From simulations results a comparative analysis is performed and it is found that by the application of the method Search in Improved Network in the parameters estimation of the Rakhmatov and Vrudhula model it is possible to obtain an easy and intuitive implementation, improving the results obtained in the model accuracy, as well as preserving the runtime. 1. Introduction Currently, the use of mobile devices in the most varied areas, such as industry, education, health, and leisure, has been increasing due to the proliferation of wireless technology access. Examples of mobile devices are cell phones, digital cameras, tablets, ipods, laptops, alarm sensors installed in homes or commercial buildings, and other. The market trend is to have smaller mobile devices, faster, which perform the most varied functions, connected to global network of services and resources through a high performance infrastructure. These devices are powered by a rechargeable battery, so its use is determined through the battery lifetime; it is by definition the time the battery takes to reach the minimum level of power capacity, called cutoff level; after reaching this level the electrochemical reactions cease, and the battery stops providing power to the devices [1]. Thus, in the mobile devices design the battery lifetime is regarded as an important feature, because it reports the time that the device can be used without the need to connect it to an external source. In this context, it is important to have a method to predict the battery lifetime and thus determine the time that the device may remain operating without the need of recharging. One way is by using mathematical models that describe the energy consumption of the devices. Different
References
[1]
P. Sausen, Energy integrated management and topology control in wireless sensor networks [Ph.D. thesis], UFCG, Campina Grande, Brazil, 2008.
[2]
K. Lahiri, A. Raghunathan, S. Dey, and D. Panigrahi, “Battery-driven system design: a new frontier in low power design,” in Proceedings of the 7th Asia and South Pacific and the 15th International Conference on VLSI Design (ASP-DAC '02), pp. 261–267, 2002.
[3]
T. L. Martin, Balancing batteries, power, and performance: system issues in CPU speed-setting for mobile computing [M.S. thesis], Carnegie Mellon Unerversity, 1999.
[4]
A. V. Oliveira, Comparative analysis of methodologies of parameter estimation applied in analytical models used in the prediction of the battery lifetime [M.S. thesis], Northwest Regional University of Rio Grande do Sul State, Ijuí, Brazil, 2012, (Portuguese).
[5]
D. N. Rakhmatov and S. B. K. Vrudhula, “An analytical high-level battery model for use in energy management of portable electronic systems,” in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 488–493, November 2001.
[6]
K. K. Schneider, Analytical models for predicting of battery lifetime used in mobile devices [M.S. thesis], Northwest Regional University of Rio Grande do Sul State, Ijuí, Brazil, 2011, (Portuguese).
[7]
K. K. Schneider, P. S. Sausen, and A. Sausen, “Comparative analysis of the batteries lifetime used in mobile devices from the analytical models,” TEMA, Trends in Applied and Computational Mathematics, vol. 12, no. 1, pp. 43–54, 2011.
[8]
C. Chiasserini and R. Rao, “A model for battery pulsed discharge with recovery effect,” in Proceedings of the Wireless Communications and Networking Conference, pp. 636–639, 1999.
[9]
M. Chen and G. A. Rincón-Mora, “Accurate electrical battery model capable of predicting runtime and I-V performance,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504–511, 2006.
[10]
C. M. D. Porciuncula, Application of battery electric models for predicting of the lifetime of mobile devices [M.S. thesis], Northwest Regional University of Rio Grande do Sul State, Ijuí, Brazil, 2012, (Portuguese).
[11]
C. M. D. Porciuncula, A. Oliveira, P. S. Sausen, and A. Sausen, “Comparative evaluation between the battery electric model, and linear and peukert law analytical models,” Journal Brazilian of Applied Computing, vol. 4, no. 1, pp. 71–80, 2012 (Portuguese).
[12]
M. Jongerden and B. Haverkort, “Battery modeling,” Tech. Rep., Faculty Electrical Engineering, Mathematics and Computer Science, January 2008.
[13]
H. B. Nonemacher, L. Minelli, P. S. Sausen, and A. Sausen, “Development of a test bed for evaluating of mathematical models to predict the batteries lifetime,” in XXIV CRICTE, Regional Conference of Undergraduate Research and Technological Engineering, Rio Grande, RS, Brazil, 2010, (Portuguese).
[14]
A. de Cezaro, Inverse Problems: An Introduction, Mathematics Colloquium in the South Region, 1, SBM, 2010, (Portuguese).
[15]
M. I. Mesa, O. L. Santiago, F. H. Fernández Accurate, D. C. Rodríguez, A. J. da Silva Neto, and L. D. T. Camara, “An approach to parameters estimation of a chromatography model using a clustering genetic algorithm based inverse model,” Soft Computing, vol. 15, no. 5, pp. 963–973, 2011.
[16]
A. J. Silva Neto, Inverse Problems: Fundamental Concepts and Applications, UERJ, Rio de Janeiro, Brazil, 2005, (Portuguese).
[17]
A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Paris, France, 2005.
[18]
P. A. P. Borges, M. T. Vione, and A. Cervi, “Determination of coefficients of the van Genuchten model by employing inverse problem,” in Proceedings of VIII Regional Meeting of Applied Mathematics and Computational, Pelotas, 2008, (Portuguese).
[19]
A. Cervi, Determination of the characteristic equation parameters of soils through the inverse problems solution technical based on data evaporation [M.S. thesis], Northwest Regional University of Rio Grande do Sul State, Ijuí, Brazil, 2009, (Portuguese).
[20]
A. J. Silva Neto and J. C. Becceneri, Intelligence Computational Techniques Inspired in the Nature: Applications in Inverse Problems in Radiative Transfer, Notes in Applied Mathematics, 41, 2009, (Portuguese).
[21]
H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems: Mathematics and Its Applications, Mathematics and Its Applications Series, Kluwer Academic Plubishers, 1996.
[22]
N. M. McCormi, “Inverse problems: methods and applications,” TEMA, Trends in Applied and Computational Mathematics, vol. 13, no. 3, pp. 277–289, 2012.
[23]
L. A. Aguirre, Introduction to System Identification: Linear and nonLinear Techniques Applied to Real Systems, UFMG, Belo Horizonte, Brazil, 2007, (Portuguese).
[24]
L. Ljung, System Identification Theory for the User, Prentice Hall, Englewood Cliffs, NJ, USA, 1999.