全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reduction of Oxygen-Carrying Capacity Weakens the Effects of Increased Plasma Viscosity on Cardiac Performance in Anesthetized Hemodilution Model

DOI: 10.5402/2012/702059

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigated the effects of reduced oxygen-carrying capacity on cardiac function during acute hemodilution, while the plasma viscosity was increased in anesthetized animals. Two levels of oxygen-carrying capacity were created by 1-step and 2-step hemodilution in male golden Syrian hamsters. In the 1-step hemodilution (1-HD), 40% of the animals' blood volume (BV) was exchanged with 6% dextran 70?kDa (Dx70) or dextran 2000?kDa (Dx2M). In the 2-step hemodilution (2-HD), 25% of the animals' BV was exchanged with Dx70 followed by 40% BV exchanged with Dx70 or Dx2M after 30 minutes of first hemodilution. Oxygen delivery in the 2-HD group consequently decreased by 17% and 38% compared to that in the 1-HD group hemodiluted with Dx70 and Dx2M, respectively. End-systolic pressure and maximum rate of pressure change in the 2-HD group significantly lowered compared with that in the 1-HD group for both Dx70 and Dx2M. Cardiac output in the 2-HD group hemodiluted with Dx2M was significantly higher compared with that hemodiluted with Dx70. In conclusion, increasing plasma viscosity associated with lowering oxygen-carrying capacity should be considerably balanced to maintain the cardiac performance, especially in the state of anesthesia. 1. Introduction Hemodilution reduces the circulating number of red blood cells (RBCs), decreases oxygen-carrying capacity, and lowers whole blood viscosity. To maintainf tissue oxygenation preventing multiorgan dysfunction, cardiac output (CO) increases to compensate for the reduction in oxygen-carrying capacity. The acute normovolemic hemodilution in anesthetized dogs revealed that myocardial blood flow significantly led an increased preservation of both myocardial oxygen-carrying capacity and consumption [1, 2]. Sufficient oxygen is normally offloaded from the hemoglobin in the RBCs unless the hematocrit (Hct) drops to very low values. There is a trigger point which is necessary to re-administer the RBCs into the circulation. The threshold for a blood transfusion is set at ~7?g of hemoglobin per 100?mL of blood. However, the findings by Tsai and Intaglietta [3] indicated that hemoglobin concentration can be lowered to 6?g/dL (18%?Hct) if the blood viscosity at a physiological level is maintained with a high viscosity plasma expander (HVPE). Other studies using an awake animal model as well as an anesthetized animal model have shown that microvascular function is impaired if the blood viscosity is severely decreased by hemodilution rather than an insufficient oxygen-carrying capacity [4–8]. A recent study by Chatpun and Cabrales [9]

References

[1]  O. P. Habler, M. S. Kleen, A. H. Podtschaske et al., “The effect of acute normovolemic hemodilution (ANH) on myocardial contractility in anesthetized dogs,” Anesthesia and Analgesia, vol. 83, no. 3, pp. 451–458, 1996.
[2]  G. J. Crystal, M. W. Rooney, and M. R. Salem, “Myocardial blood flow and oxygen consumption during isovolemic hemodilution alone and in combination with adenosine-induced controlled hypotension,” Anesthesia and Analgesia, vol. 67, no. 6, pp. 539–547, 1988.
[3]  A. G. Tsai and M. Intaglietta, “High viscosity plasma expanders: volume restitution fluids for lowering the transfusion trigger,” Biorheology, vol. 38, no. 2-3, pp. 229–237, 2001.
[4]  P. Cabrales, A. G. Tsai, and M. Intaglietta, “Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity?” Shock, vol. 27, no. 4, pp. 380–389, 2007.
[5]  P. Cabrales, A. G. Tsai, and M. Intaglietta, “Microvascular pressure and functional capillary density in extreme hemodilution with low-and high-viscosity dextran and a low-viscosity Hb-based O2 carrier,” American Journal of Physiology, vol. 287, no. 1, pp. H363–H373, 2004.
[6]  P. Cabrales, J. Martini, M. Intaglietta, and A. G. Tsai, “Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity,” American Journal of Physiology, vol. 291, no. 2, pp. H581–H590, 2006.
[7]  P. Cabrales, A. G. Tsai, and M. Intaglietta, “Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution,” American Journal of Physiology, vol. 288, no. 4, pp. H1708–H1716, 2005.
[8]  C. De Wit, C. Sch?fer, P. Von Bismarck, S. S. Bolz, and U. Pohl, “Elevation of plasma viscosity induces sustained NO-mediated dilation in the hamster cremaster microcirculation in vivo,” Pflugers Archiv European Journal of Physiology, vol. 434, no. 4, pp. 354–361, 1997.
[9]  S. Chatpun and P. Cabrales, “Cardiac mechanoenergetic cost of elevated plasma viscosity after moderate hemodilution,” Biorheology, vol. 47, no. 3-4, pp. 225–237, 2010.
[10]  S. Chatpun and P. Cabrales, “Effects of plasma viscosity modulation on cardiac function during moderate hemodilution,” Asian Journal of Transfusion Science, vol. 4, no. 2, pp. 102–108, 2010.
[11]  W. W. Muir III, A. Kijtawornrat, Y. Ueyama, S. V. Radecki, and R. L. Hamlin, “Effects of intravenous administration of lactated Ringer's solution on hematologic, serum biochemical, rheological, hemodynamic, and renal measurements in healthy isoflurane-anesthetized dogs,” Journal of American Veterinary Medical Association, vol. 239, no. 5, pp. 630–637, 2011.
[12]  G. J. Crystal and M. R. Salem, “Myocardial and systemic hemodynamics during isovolemic hemodilution alone and combined with nitroprusside-induced controlled hypotension,” Anesthesia and Analgesia, vol. 72, no. 2, pp. 227–237, 1991.
[13]  O. Fraga Ade, D. T. Fantoni, D. A. Otsuki, C. A. Pasqualucci, M. C. D. Abduch, and J. O. Costa Auler, “Evidence for myocardial defects under extreme acute normovolemic hemodilution with hydroxyethyl starch and lactated ringer's solution,” Shock, vol. 24, no. 4, pp. 388–395, 2005.
[14]  B. E. Ickx, M. Rigolet, and P. J. Van Der Linden, “Cardiovascular and metabolic response to acute normovolemic anemia: effects of anesthesia,” Anesthesiology, vol. 93, no. 4, pp. 1011–1016, 2000.
[15]  A. S. Most, N. A. Ruocco Jr., and H. Gewirtz, “Effect of a reduction in blood viscosity on maximal myocardial oxygen delivery distal to a moderate coronary stenosis,” Circulation, vol. 74, no. 5, pp. 1085–1092, 1986.
[16]  K. D. Vandegriff, R. J. Rohlfs, M. D. Magde, and R. M. Winslow, “Hemoglobin-oxygen equilibrium curves measured during enzymatic oxygen consumption,” Analytical Biochemistry, vol. 256, no. 1, pp. 107–116, 1998.
[17]  P. Pacher, T. Nagayama, P. Mukhopadhyay, S. Bátkai, and D. A. Kass, “Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats,” Nature Protocols, vol. 3, no. 9, pp. 1422–1434, 2008.
[18]  J. Baan, E. T. Van der Velde, and H. G. De Bruin, “Continuous measurement of left ventricular volume in animals and humans by conductance catheter,” Circulation, vol. 70, no. 5, pp. 812–823, 1984.
[19]  D. Georgakopoulos, W. A. Mitzner, C. H. Chen et al., “In vivo murine left ventricular pressure-volume relations by miniaturized conductance micromanometry,” American Journal of Physiology, vol. 274, no. 4, pp. H1416–H1422, 1998.
[20]  P. Steendijk, E. T. Van der Velde, and J. Baan, “Left ventricular stroke volume by single and dual excitation of conductance catheter in dogs,” American Journal of Physiology, vol. 264, no. 6, pp. H2198–H2207, 1993.
[21]  F. Metivier, S. J. Marchais, A. P. Guerin, B. Pannier, and G. M. London, “Pathophysiology of anaemia: focus on the heart and blood vessels,” Nephrology Dialysis Transplantation, vol. 15, supplement 3, no. 3, pp. 14–18, 2000.
[22]  P. Cabrales and A. G. Tsai, “Plasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions,” American Journal of Physiology, vol. 291, no. 5, pp. H2445–H2452, 2006.
[23]  B. Hiebl, C. Mrowietz, K. Ploetze, K. Matschke, and F. Jung, “Critical hematocrit and oxygen partial pressure in the beating heart of pigs,” Microvascular Research, vol. 80, no. 3, pp. 389–393, 2010.
[24]  M. Freitag, T. Standl, E. P. Horn, S. Wilhelm, and J. Schulte Am Esch, “Acute normovolaemic haemodilution beyond a haematocrit of 25%: ratio of skeletal muscle tissue oxygen tension and cardiac index is not maintained in the healthy dog,” European Journal of Anaesthesiology, vol. 19, no. 7, pp. 487–494, 2002.
[25]  D. R. Spahn, B. J. Leone, J. G. Reves, and T. Pasch, “Cardiovascular and coronary physiology of acute isovolemic hemodilution: a review of nonoxygen-carrying and oxygen-carrying solutions,” Anesthesia and Analgesia, vol. 78, no. 5, pp. 1000–1021, 1994.
[26]  H. Suga, Y. Igarashi, O. Yamada, and Y. Goto, “Cardiac oxygen consumption and systolic pressure volume area,” Basic Research in Cardiology, vol. 81, supplement 1, no. 1, pp. 39–50, 1986.
[27]  H. Suga and G. Matsushita, “Real time analog computation of left ventricular systolic pressure volume area as predictor of oxygen consumption,” Japanese Heart Journal, vol. 22, no. 6, pp. 997–1003, 1981.
[28]  H. Suga, T. Hayashi, and M. Shirahata, “Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption,” American Journal of Physiology, vol. 240, no. 1, pp. H39–H44, 1981.
[29]  H. Suga, T. Hayashi, and S. Suehiro, “Equal oxygen consumption rates of isovolumic and ejecting contractions with equal systolic pressure-volume areas in canine left ventricle,” Circulation Research, vol. 49, no. 5, pp. 1082–1091, 1981.
[30]  M. Zorniak, K. Mitrega, S. Bialka, M. Porc, and T. F. Krzeminski, “Comparison of thiopental, urethane, and pentobarbital in the study of experimental cardiology in rats in vivo,” Journal of Cardiovascular Pharmacology, vol. 56, no. 1, pp. 38–44, 2010.
[31]  G. J. Crystal, “Myocardial oxygen supply-demand relations during isovolemic hemodilution,” Advances in Pharmacology, vol. 31, pp. 285–312, 1994.
[32]  K. Messmer, U. Kreimeier, and M. Intaglietta, “Present state of intentional hemodilution,” European Surgical Research, vol. 18, no. 3-4, pp. 254–263, 1986.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133