Background. The inferior hypogastric plexus mediates pain sensation through the sympathetic chain for the lower abdominal and pelvic viscera and is thought to be a major structure involved in numerous pelvic and perineal pain syndromes and conditions. Objectives. The objective of this study was to demonstrate the structures affected by an inferior hypogastric plexus blockade utilizing the transsacral approach. Study Design. This is an observational study of fresh cadaver subjects. Setting. The cadaver injections and dissections were performed at the Department of Forensic Sciences and Insurance Medicine, Semmelweis University, Budapest, Hungary after obtaining institutional review board approval. Methods. 5 fresh cadavers underwent inferior hypogastric plexus blockade with radiographic contrast and methylene blue dye injection by the transsacral fluoroscopic technique described by Schultz followed by dissection of the pelvic and perineal structures to localize distribution of the indicator dye. Radiographs demonstrating correct needle localization by contrast spread in the specific tissue plane and photographs of the dye distribution after cadaver dissection were recorded for each subject. Results. In all cadavers the dye spread to the posterior surface of the rectum and the superior hypogastric plexus. The dye also demonstrated distribution to the anterior sacral nerve roots of S1, 2, and 3 with bilateral spread in 3 cadavers and ipsilateral spread in 2 of them. Limitations. The small number of cadaver specimens in this study limits the results and generalization of their clinical significance. Conclusions. Inferior hypogastric plexus blockade by a transsacral approach results in distribution of dye to the anterior sacral nerve roots and superior hypogastric plexus as demonstrated by dye spread in freshly dissected cadavers and not by local anesthetic spread to other pelvic and perineal viscera. 1. Background The inferior hypogastric plexus (IHP) is the caudal component of the sympathetic chain and is composed of both adrenergic and cholinergic nerve fibers. Morphologically the IHP is a symmetrical, flat, rectangular, sagittal structure, and its nerve branches form a net of nerve endings surrounding the pelvic organs, rectum, bladder, and vagina. In females, the IHP is a triangular structure with its base positioned anteriorly to its afferent sacral nerve roots, its inferior edge stretching anteriorly from the fourth sacral root to the point of entry of the distal ureter into the broad ligament, and its cranial edge is parallel to the course of the
References
[1]
B. Mauroy, X. Demondion, B. Bizet, A. Claret, P. Mestdagh, and C. Hurt, “The female inferior hypogastric (= pelvic) plexus: anatomical and radiological description of the plexus and its afferences—applications to pelvic surgery,” Surgical and Radiologic Anatomy, vol. 29, no. 1, pp. 55–66, 2007.
[2]
B. Mauroy, X. Demondion, A. Drizenko et al., “The inferior hypogastric plexus (pelvic plexus): its importance in neural preservation techniques,” Surgical and Radiologic Anatomy, vol. 25, no. 1, pp. 6–15, 2003.
[3]
D. M. Schultz, “Inferior hypogastric plexus blockade: a transsacral approach,” Pain Physician, vol. 10, no. 6, pp. 757–763, 2007.
[4]
H. S. Choi, Y. H. Kim, J. W. Han, and D. E. Moon, “A new technique for inferior hypogastric plexus block: a coccygeal transverse approach-A case report,” Korean Journal of Pain, vol. 25, no. 1, pp. 38–42, 2012.
[5]
F. Campbell and B. J. Collett, “Chronic pelvic pain,” British Journal of Anaesthesia, vol. 73, no. 5, pp. 571–573, 1994.
[6]
K. T. Zondervan, P. L. Yudkin, M. P. Vessey, M. G. Dawes, D. H. Barlow, and S. H. Kennedy, “Prevalence and incidence of chronic pelvic pain in primary care: evidence from a national general practice database,” British Journal of Obstetrics and Gynaecology, vol. 106, no. 11, pp. 1149–1155, 1999.
[7]
K. Vincent, “Chronic pelvic pain in women,” Postgraduate Medical Journal, vol. 85, no. 999, pp. 24–29, 2009.
[8]
G. Turker, E. Basagan-Mogol, A. Gurbet, C. Ozturk, N. Uckunkaya, and S. Sahin, “A new technique for superior hypogastric plexus block: the posteromedian transdiscal approach,” Tohoku Journal of Experimental Medicine, vol. 206, no. 3, pp. 277–281, 2005.
[9]
M. A. Bakr, S. A. Mohamed, M. F. Mohamad, and D. G. Ahmed, “Neurolytic inferior hypogastric plexus block: an alternative treatment of lower pelvic and perineal cancer related pain,” Journal of American Science, vol. 7, no. 12, pp. 172–175, 2011.
[10]
H. Bosscher, “Blockade of the superior hypogastric plexus for visceral pelvic pain,” Pain Practice, vol. 1, no. 2, pp. 162–170, 2001.
[11]
R. Plancarte, O. A. De Leon-Casasola, M. El-Helaly, S. Allende, and M. J. Lema, “Neurolytic superior hypogastric plexus block for chronic pelvic pain associated with cancer,” Regional Anesthesia, vol. 22, no. 6, pp. 562–568, 1997.
[12]
S. D. Waldman, W. L. Wilson, and R. D. Kreps, “Clinical report. Superior hypogastric plexus block using a single needle and computed tomography guidance: description of a modified technique,” Regional Anesthesia, vol. 16, no. 5, pp. 286–287, 1991.
[13]
G. E. Kanazi, F. M. Perkins, R. Thakur, and E. Dotson, “New technique for superior hypogastric plexus block,” Regional Anesthesia and Pain Medicine, vol. 24, no. 5, pp. 473–476, 1999.
[14]
S. Erdine, A. Yucel, M. Celik, and G. K. Talu, “Transdiscal approach for hypogastric plexus block,” Regional Anesthesia and Pain Medicine, vol. 28, no. 4, pp. 304–308, 2003.
[15]
D. Nabil and A. A. Eissa, “Evaluation of posteromedial transdiscal superior hypogastric block after failure of the classic approach,” Clinical Journal of Pain, vol. 26, no. 8, pp. 694–697, 2010.