全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Isoflurane Enhances the Moonlighting Activity of GAPDH: Implications for GABAA Receptor Trafficking

DOI: 10.5402/2012/970795

Full-Text   Cite this paper   Add to My Lib

Abstract:

receptor activity is directly modulated by glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a protein with many nonglycolytic moonlighting functions. In addition to playing a role in the phosphorylation of the receptor, GAPDH may also participate in proper receptor trafficking to the plasma membrane. We previously showed that volatile anesthetics affect GAPDH structure and function that may contribute to the manner by which GAPDH modulates the receptor. In the current study, GAPDH interacted with engineered phospholipid-containing vesicles, preferring association with phosphatidylserine over phosphatidylcholine. Phosphatidyl-serine is known to participate in membrane trafficking of transport proteins and to play a role in receptor stability and function. We observed that GAPDH promoted the self-association and fusion of phosphatidyl-serine-rich vesicles as well as decreased membrane fluidity. Isoflurane enhanced each of these GAPDH-mediated events. Isoflurane also increased the binding of GAPDH to the cytoplasmic loop of the receptor. These observations are consistent with the working model of isoflurane playing a role in the trafficking of membrane proteins. This study is the first to implicate GAPDH and isoflurane in the regulation of receptor localization, providing insight into the mechanism of action of anesthesia. 1. Introduction The activity of the receptor is modulated directly by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [1], which participates in the local production of ATP followed by phosphotransferase activity involving the phosphorylation of the cytoplasmic loop of the α-subunit of the receptor. There is an increased recognition of GAPDH’s multifunctionality, particularly with regard to neuronal function [2]. We think that in addition to this role (i.e., kinase-dependent phosphorylation of the receptor [1]), GAPDH may also participate in the proper receptor trafficking to the plasma membrane, and perhaps the recycling event. We previously showed that volatile anesthetics affect GAPDH structure and function [3, 4]. Sevoflurane, for example, alters the kinetic properties of GAPDH, and isoflurane affects the oligomeric configuration of the protein. Others have also showed that volatile agents influence the oxidoreductase activity of GAPDH [5, 6]. These observations support the concept that volatile anesthetic agents bind to GAPDH. We propose that the binding of anesthetic agents to GAPDH may contribute to the manner by which GAPDH modulates the receptor. The functional diversity of GAPDH includes the ability of the protein to interact

References

[1]  J. J. Laschet, F. Minier, I. Kurcewicz et al., “Glyceraldehyde-3-phosphate dehydrogenase is a receptor kinase linking glycolysis to neuronal inhibition,” Journal of Neuroscience, vol. 24, no. 35, pp. 7614–7622, 2004.
[2]  N. W. Seidler, “Multiple binding partners,” Advances in Experimental Medicine and Biology, vol. 985, pp. 249–267, 2013.
[3]  A. E. Pattin, S. Ochs, C. S. Theisen, E. E. Fibuch, and N. W. Seidler, “Isoflurane's effect on interfacial dynamics in GAPDH influences methylglyoxal reactivity,” Archives of Biochemistry and Biophysics, vol. 498, no. 1, pp. 7–12, 2010.
[4]  T. A. Swearengin, E. E. Fibuch, and N. W. Seidler, “Sevoflurane modulates the activity of glyceraldehyde 3-phosphate dehydrogenase,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 21, no. 5, pp. 575–579, 2006.
[5]  D. M. Laverty and O. Fennema, “Effects of anesthetics and dichlorodifluoromethane on the activities of glyceraldehyde-phosphate dehydrogenase and pectin methylesterase,” Biochemical Pharmacology, vol. 34, no. 16, pp. 2839–2846, 1985.
[6]  D. M. Laverty and O. Fennema, “Effect of anaesthetics and dichlorodifluoromethane on the viability of the cells of Escherichia coli and the activities of some of its enzymes,” Microbios, vol. 44, no. 177, pp. 7–20, 1985.
[7]  N. W. Seidler, “Functional diversity,” Advances in Experimental Medicine and Biology, vol. 985, pp. 103–147, 2013.
[8]  N. W. Seidler, “Compartmentation of GAPDH,” Advances in Experimental Medicine and Biology, vol. 985, pp. 61–101, 2013.
[9]  M. Kaneda, K. I. Takeuchi, K. Inoue, and M. Umeda, “Localization of the phosphatidylserine-binding site of glyceraldehyde-3-phosphate dehydrogenase responsible for membrane fusion,” Journal of Biochemistry, vol. 122, no. 6, pp. 1233–1240, 1997.
[10]  P. E. Glaser, “Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms,” Biochemistry, vol. 34, no. 38, pp. 12193–12203, 1995.
[11]  R. J. Hessler, R. A. Blackwood, T. G. Brock, J. W. Francis, D. M. Harsh, and J. E. Smolen, “Identification of glyceraldehyde-3-phosphate dehydrogenase as a Ca2+- dependent fusogen in human neutrophil cytosol,” Journal of Leukocyte Biology, vol. 63, no. 3, pp. 331–336, 1998.
[12]  T. Nakagawa, Y. Hirano, A. Inomata et al., “Participation of a fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, in nuclear membrane assembly,” Journal of Biological Chemistry, vol. 278, no. 22, pp. 20395–20404, 2003.
[13]  T. C. Jacob, S. J. Moss, and R. Jurd, “ receptor trafficking and its role in the dynamic modulation of neuronal inhibition,” Nature Reviews Neuroscience, vol. 9, no. 5, pp. 331–343, 2008.
[14]  C. N. Connolly, B. J. Krishek, B. J. McDonald, T. G. Smart, and S. J. Moss, “Assembly and cell surface expression of heteromeric and homomeric γ-aminobutyric acid type A receptors,” Journal of Biological Chemistry, vol. 271, no. 1, pp. 89–96, 1996.
[15]  I. Sarto-Jackson and W. Sieghart, “Assembly of receptors (Review),” Molecular Membrane Biology, vol. 25, no. 4, pp. 302–310, 2008.
[16]  C. C. K. Chao, W. C. Yam, and S. Lin-Chao, “Coordinated induction of two unrelated glucose-regulated protein genes by a calcium ionophore: human BiP/GRP78 and GAPDH,” Biochemical and Biophysical Research Communications, vol. 171, no. 1, pp. 431–438, 1990.
[17]  R. Mori, Q. Wang, K. D. Danenberg, J. K. Pinski, and P. V. Danenberg, “Both β-actin and GAPDH are useful reference genes for normalization of quantitative RT-PCR in human FFPE tissue samples of prostate cancer,” Prostate, vol. 68, no. 14, pp. 1555–1560, 2008.
[18]  X. M. Fu and B. T. Zhu, “Human pancreas-specific protein disulfide-isomerase (PDIp) can function as a chaperone independently of its enzymatic activity by forming stable complexes with denatured substrate proteins,” Biochemical Journal, vol. 429, no. 1, pp. 157–169, 2010.
[19]  C. A. McClintick, C. S. Theisen, J. E. Ferns, E. E. Fibuch, and N. W. Seidler, “Isoflurane preconditioning involves upregulation of molecular chaperone genes,” Biochemical and Biophysical Research Communications, vol. 411, no. 2, pp. 387–392, 2011.
[20]  E. J. Tisdale, F. Azizi, and C. R. Artalejo, “Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase Cι to associate with microtubules and to recruit dynein,” Journal of Biological Chemistry, vol. 284, no. 9, pp. 5876–5884, 2009.
[21]  M. F. García-Mayoral, I. Rodríguez-Crespo, and M. Bruix, “Structural models of DYNLL1 with interacting partners: African swine fever virus protein p54 and postsynaptic scaffolding protein gephyrin,” FEBS Letters, vol. 585, no. 1, pp. 53–57, 2011.
[22]  P. A. Leventis and S. Grinstein, “The distribution and function of phosphatidylserine in cellular membranes,” Annual Review of Biophysics, vol. 39, no. 1, pp. 407–427, 2010.
[23]  M. R. Baker, S. K. Benton, C. S. Theisen, C. A. McClintick, E. E. Fibuch, and N. W. Seidler, “Isoflurane's effect on protein conformation as a proposed mechanism for preconditioning,” Biochemistry Research International, vol. 2011, Article ID 739712, 2011.
[24]  Y. H. Chen, R. Q. He, Y. Liu, Y. Liu, and Z. G. Xue, “Effect of human neuronal tau on denaturation and reactivation of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase,” Biochemical Journal, vol. 351, no. 1, pp. 233–240, 2000.
[25]  M. B. Najjar, M. Chikindas, and T. J. Montville, “Changes in Listeria monocytogenes membrane fluidity in response to temperature stress,” Applied and Environmental Microbiology, vol. 73, no. 20, pp. 6429–6435, 2007.
[26]  S. N. Lee, L. Li, and Z. Zuo, “Glutamate transporter type 3 knockout mice have a decreased isoflurane requirement to induce loss of righting reflex,” Neuroscience, vol. 171, no. 3, pp. 788–793, 2010.
[27]  Y. Guo, W. C. Au, M. Shakoury-Elizeh et al., “Phosphatidylserine is involved in the ferrichrome-induced plasma membrane trafficking of Arn1 in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 285, no. 50, pp. 39564–39573, 2010.
[28]  P. N. Moynagh and D. C. Williams, “Stabilization of the peripheral-type benzodiazepine acceptor by specific phospholipids,” Biochemical Pharmacology, vol. 43, no. 9, pp. 1939–1945, 1992.
[29]  B. C. Wise, A. Guidotti, and E. Costa, “Phosphorylation induces a decrease in the biological activity of the protein inhibitor (GABA-modulin) of γ-aminobutyric acid binding sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 3 I, pp. 886–890, 1983.
[30]  N. W. Seidler, “GAPDH in Anesthesia,” Advances in Experimental Medicine and Biology, vol. 985, pp. 269–291, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133