The viscacha (Lagostomus maximus maximus) is a seasonal South American wild rodent. The adult males exhibit an annual reproductive cycle with periods of maximum and minimum gonadal activity. Four segments have been identified in the epididymis of this species: initial, caput, corpus, and cauda. The main objective of this work was to relate the seasonal morphological changes observed in the epididymal duct with the data from epididymal sperm during periods of activity and gonadal regression using light and scanning electron microscopy (SEM). Under light and electron microscopy, epididymal corpus and cauda showed marked seasonal variations in structural parameters and in the distribution of different cellular populations of epithelium. Initial and caput segments showed mild morphological variations between the two periods. Changes in epididymal sperm morphology were observed in the periods analyzed and an increased number of abnormal gametes were found during the regression period. During this period, anomalies were found mainly in the head, midpiece, and neck, while in the activity period, defects were found only in the head. Our results confirm that the morphological characteristics of the epididymal segments, as well as sperm morphology, undergo significant changes during the reproductive cycle of Lagostomus. 1. Introduction Animal species that develop their life cycle in contact with nature must adapt physiologically to the annual changes conditioned by the environment. The role of environment signals in synchronization has been described in previous reports, especially the circannual regulation of pituitary and gonadal function by photoperiod [1, 2]. Depending on the season, adult males have reproductive cycles that are expressed by morphological and biochemical changes in their reproductive organs [3]. Also, some species show testes devoid of all signs of spermatogenic activity during the winter months [4]. Moreover, mammalian spermatozoa produced in the testis must mature in the epididymis to acquire their fertilizing capability [5, 6]. Specific proteins secreted by epithelial cells of the epididymis and factors generated by accessory glands modulate the structure and function of the sperm plasma membrane. The size and secretory activity of epithelia in the epididymis as well as in the accessory glands are influenced by testosterone [7]. In this study, the model animal used is the viscacha (Lagostomus maximus maximus), a South American rodent which lives in burrows built deep in the ground and only leaves its cave at dawn to look for food [8, 9].
References
[1]
F. H. Bronson and P. D. Heidemann, “Seasonal regulation of reproduction in mammals,” The Physiology of Reproduction, pp. 541–583, 1994.
[2]
S. Steinlechner and P. Niklowitz, “Impact of photoperiod and melatonin on reproduction in small mammals,” Animal Reproduction Science, vol. 30, no. 1–3, pp. 1–28, 1992.
[3]
G. A. Lincoln, “Biology of seasonal breeding in deer,” The Biology of Deer, pp. 565–574, 1992.
[4]
S. Blottner, O. Hingst, and H. H. D. Meyer, “Seasonal spermatogenesis and testosterone production in roe deer (Capreolus capreolus),” Journal of Reproduction and Fertility, vol. 108, no. 2, pp. 299–305, 1996.
[5]
T. T. Turner, “On the epididymis and its role in the development of the fertile ejaculate,” Journal of Andrology, vol. 16, no. 4, pp. 292–298, 1995.
[6]
J. M. Bedford, “Effects of duct on the fertilizing ability of espermatozoa from different regions of the rabbit epididiymis,” Journal of Experimental Zoology, vol. 166, pp. 271–282, 1967.
[7]
F. Goeritz, M. Quest, A. Wagener et al., “Seasonal timing of sperm production in roe deer: interrelationship among changes in ejaculate parameters, morphology and function of testis and accessory glands,” Theriogenology, vol. 59, no. 7, pp. 1487–1502, 2003.
[8]
A. C. Llanos and J. A. Crespo, “Ecología de la vizcacha (Lagostomus maximus maximus) en el noroeste de la provincia de Entre Ríos,” Invest in Agriculture, vol. 6, pp. 289–378, 1952.
[9]
J. E. Jackson, “Reproductive parameters of the plains viscacha (Lagostomus maximus maximus) in San Luis province, Argentina,” Vida Silvestre Neotropical, vol. 2, no. 1, pp. 57–62, 1989.
[10]
S. Dominguez, R. S. Piezzi, L. Scardapane, and J. A. Guzman, “A light and electron microscopic study of the pineal gland of the viscacha (Lagostomus maximum maximus),” Journal of Pineal Research, vol. 4, no. 2, pp. 211–219, 1987.
[11]
L. B. Fuentes, N. Caravaca, L. E. Pelzer, L. A. Scardapane, R. S. Piezzi, and J. A. Guzman, “Seasonal variations in the testis and epididymis of vizcacha (Lagostomus maximus maximus),” Biology of Reproduction, vol. 45, no. 3, pp. 493–497, 1991.
[12]
L. B. Fuentes, J. C. Calvo, E. H. Charreau, and J. A. Guzman, “Seasonal variations in testicular LH, FSH, and PRL receptors; in vitro testosterone production; and serum testosterone concentration in adult male vizcacha (Lagostomus maximus maximus),” General and Comparative Endocrinology, vol. 90, no. 2, pp. 133–141, 1993.
[13]
F. Mohamed, T. Fogal, S. Dominguez, L. Scardapane, J. Guzmán, and R. Piezzi, “Seasonal variations and ultrastructure of colloid accumulation in the pituitary pars distalis of viscacha (Lagostomus maximus maximus),” Biocell, vol. 18, no. 3, pp. 23–31, 1994.
[14]
F. Mohamed, T. Fogal, S. Dominguez, L. Scardapane, J. Guzmán, and R. Piezzi, “Colloid in the pituitary pars distalis of viscacha (Lagostomus maximus maximus): ultrastructure and occurrence in relation to season, sex and growth,” The Anatomical Record, vol. 258, pp. 252–261, 2000.
[15]
E. Mu?oz, T. Fogal, S. Dominguez, L. Scardapane, J. Guzmán, and R. Piezzi, “Stages of the cycle of the seminiferous epithelium of the viscacha (Lagostomus maximus maximus),” The Anatomical Record, vol. 252, no. 1, pp. 8–16, 1998.
[16]
V. Filippa, A. Penissi, and F. Mohamed, “Seasonal variations of gonadotropins in the pars distalis male viscacha pituitary. Effect of chronic melatonin treatment,” European Journal of Histochemistry, vol. 49, no. 3, pp. 291–300, 2005.
[17]
V. Filippa and F. Mohamed, “Immunohistochemical study of somatotrophs in pituitary pars distalis of male viscacha (Lagostomus maximus maximus) in relation to the gonadal activity,” Cells Tissues Organs, vol. 184, no. 3-4, pp. 188–197, 2007.
[18]
C. Aguilera-Merlo, E. Mu?oz, S. Dominguez, L. Scardapane, and R. Piezzi, “Epididymis of viscacha (Lagostomus maximus maximus): morphological changes during the annual reproductive cycle,” Anatomical Record A, vol. 282, no. 1, pp. 83–92, 2005.
[19]
V. Serre and B. Robaire, “Segment-specific morphological changes in aging Brown Norway rat epididymis,” Biology of Reproduction, vol. 58, no. 2, pp. 497–513, 1998.
[20]
C. Aguilera-Merlo, T. Fogal, T. Sator et al., “Ultrastructural and biochemical seasonal changes in epididymal corpus and cauda of viscacha (Lagostomus maximus maximus),” Journal of Morphology, vol. 270, no. 7, pp. 805–814, 2009.
[21]
B. Robaire and L. Hermo, “Efferent ducts, epididymis and vas deferens: structure, functions and their regulation,” Physiology of Reproduction, pp. 999–1080, 1988.
[22]
A. Calvo, L. M. Pastor, E. Martínez, J. M. Vázquez, and J. Roca, “Age-related changes in the hamster epididymis,” The Anatomical Record, vol. 256, pp. 335–346, 1999.
[23]
C. C. L. Beu, A. M. Orsi, and R. F. Domeniconi, “Structure of the lining epithelium of the cauda epididymis of the golden hamster,” Journal of Veterinary Medicine C, vol. 38, no. 1, pp. 49–57, 2009.
[24]
T. Murakami, “A revised tannin-osmium method for noncoated scanning electron microscope specimens,” Archives Japanese History, vol. 36, pp. 189–193, 1974.
[25]
J. D. Bleil and P. M. Wassarman, “Sperm-egg interactions in the mouse: Sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein,” Developmental Biology, vol. 95, no. 2, pp. 317–324, 1983.
[26]
C. Calderón, F. Mohamed, E. Mu?oz et al., “Daily morphological variations in the viscacha (Lagostomus maximus maximus) retina. Probable local modulatory action of melatonin,” Anatomical Record, vol. 266, no. 4, pp. 198–206, 2002.
[27]
J. M. Cummins, P. D. Temple-Smith, and M. B. Renfree, “Reproduction in the male honey possum (Tarsipes rostratus: Marsupialia): The epididymis,” American Journal of Anatomy, vol. 177, no. 3, pp. 385–401, 1986.
[28]
D. A. Taggart and P. D. Temple-Smith, “Structural features of the epididymis in a dasyurid marsupial (Antechinus stuartii),” Cell and Tissue Research, vol. 258, no. 1, pp. 203–210, 1989.
[29]
B. C. Schimming and C. A. Vicentini, “Ultrastructural features in the epididymis of the dog (Canis familiaris, L.),” Anatomia, Histologia, Embryologia, vol. 30, no. 6, pp. 327–332, 2001.
[30]
S. Arrighi, M. G. Romanello, and C. Domeneghini, “Ultrastructure of the epithelium that lines the ductuli efferentes in domestic equidae, with particular reference to spermatophagy,” Acta Anatomica, vol. 149, no. 3, pp. 174–184, 1994.
[31]
E. Mu?oz, T. Fogal, S. Dominguez, L. Scardapane, and R. Piezzi, “Ultrastructural and morphometric study of the sertoli cell of the viscacha (Lagostomus maximus maximus) during the annual reproductive cycle,” The Anatomical Record, vol. 262, pp. 176–185, 2001.
[32]
C. Aguilera Merlo, E. Mu?oz, S. Dominguez, M. Fóscolo, L. Scardapane, and J. C. De Rosas, “Seasonal variations in the heterologous binding of viscacha spermatozoa. A scanning electron microscope study,” Biocell, vol. 29, no. 3, pp. 243–251, 2005.