Luteinizing hormone-releasing hormone (LHRH) neurons and fibers are located in the anteroventral hypothalamus, specifically in the preoptic medial area and the organum vasculosum of the lamina terminalis. Most luteinizing hormone-releasing hormone neurons project to the median eminence where they are secreted in the pituitary portal system in order to control the release of gonadotropin. The aim of this study is to provide, using immunohistochemistry and female brain rats, a new description of the luteinizing hormone-releasing hormone fibers and neuron localization in the anterior hypothalamus. The greatest amount of the LHRH immunoreactive material was found in the organum vasculosum of the lamina terminalis that is located around the anterior region of the third ventricle. The intensity of the reaction of LHRH immunoreactive material decreases from cephalic to caudal localization; therefore, the greatest immunoreaction is in the organum vasculosum of the lamina terminalis, followed by the dorsomedial preoptic area, the ventromedial preoptic area, and finally the ventrolateral medial preoptic area, and in fibers surrounding the suprachiasmatic nucleus and subependymal layer on the floor of the third ventricle where the least amount immunoreactive material is found. 1. Introduction The luteinizing hormone-releasing hormone (LHRH) is a gonadotropin releasing hormone (GnRH), which acts on the pituitary hormones as a follicle stimulating hormone (FSH) and luteinizing hormone (LH), which act on the gonads, [1]. The GnRH neurons are originated in the nasal epithelium and migrate accompanying the fibers of the vomeronasal and terminal nerves [2, 3] up to the anterobasal part of the brain, where they enter the brain together with nerve terminals and then move caudally to the preoptic hypothalamus, where GnRH neurons are definitively located [2, 4]. These GnRH neurons and fibers are mainly located in the anteroventral third ventricle region, specifically in the preoptic area (PA) and the organum vasculosum of the lamina terminalis (OVLT) [5]. The anterior hypothalamus is the major region of the diencephalon implicated in the development of the olfactory system and the sexual differentiation of the brain. Most of the GnRH neurons axons project to the external zone of the median eminence where is GnRH secreted into the pituitary portal vasculature to control the release of gonadotropin [6–8]. The preoptic area (PA) is part of the anterior hypothalamus and is confined to the anteroventral region of the third ventricle (AV3V); the PA is divided into, the medial
References
[1]
M. K. Herde, K. Geist, R. E. Campbell, and A. E. Herbison, “Gonadotropin-releasing hormone neurons extend complex highly branched dendritic trees outside the blood brain barrier,” Endocrinology, vol. 152, no. 10, pp. 3832–3841, 2011.
[2]
M. Schwanzel-Fukuda and D. W. Pfaff, “Origin of luteinizing hormone-releasing hormone neurons,” Nature, vol. 338, no. 6211, pp. 161–164, 1989.
[3]
M. Schwanzel-Fukuda, “Origin and migration of luteinizing hormone-releasing hormone neurons in mammals,” Microscopy Research and Technique, vol. 44, no. 1, pp. 2–10, 1999.
[4]
M. Schwanzel-Fukuda, K. L. Crossin, D. W. Pfaff, P. M. G. Bouloux, J. P. Hardelin, and C. Petit, “Migration of Luteinizing Hormone-Releasing Hormone (LHRH) neurons in early human embryos,” Journal of Comparative Neurology, vol. 366, pp. 547–557, 1996.
[5]
T. M. Plant, “Hypothalamic control of the pituitary-gonadal axis in higher primates: key advances over the last two Decades,” Journal of Neuroendocrinology, vol. 20, no. 6, pp. 719–726, 2008.
[6]
A. Silverman, A. I. Livne, and J. W. Witkin, “The gonadotrophin-releasing hormone (GnRH), neuronal systems: immunocytochemistry and in situ hybridization,” in The Physiology of Reproduction, E. Knobil and J. D. Neill, Eds., pp. 1683–1706, Raven, New York, NY, USA, 2nd edition, 1994.
[7]
V. Prevot, N. K. Hanchate, N. Bellefontaine et al., “Function-related structural plasticity of the GnRH system: a role for neuronal-glial-endothelial interactions,” Frontiers in Neuroendocrinology, vol. 31, no. 3, pp. 241–258, 2010.
[8]
A. E. Herbison, “Physiology of the GnRH neuronal network,” in Knobil and Neill’s Physiology of Reproduction, J. D. Neill, Ed., pp. 1415–1482, Academic Press, San Diego, Calif, USA, 3rd edition, 2006.
[9]
Y. Koutcherov, J. K. Mai, and G. Paxinos, “Hypothalamus of the human fetus,” Journal of Chemical Neuroanatomy, vol. 26, no. 4, pp. 253–270, 2003.
[10]
A. Casta?eyra-Perdomo, M. M. Pérez-Delgado, C. Montagnese, and C. W. Coen, “Brainstem projections to the medial preoptic region containing the luteinizing hormone-releasing hormone perikarya in the rat. An immunohistochemical and retrograde transport study,” Neuroscience Letters, vol. 139, no. 1, pp. 135–139, 1992.
[11]
H. Hasegawa, T. Ishiwata, T. Saito, T. Yazawa, Y. Aihara, and R. Meeusen, “Inhibition of the preoptic area and anterior hypothalamus by tetrodotoxin alters thermoregulatory functions in exercising rats,” Journal of Applied Physiology, vol. 98, no. 4, pp. 1458–1462, 2005.
[12]
B. Dudas and I. Merchenthaler, “Three-dimensional representation of the neurotransmitter systems of the human hypothalamus: inputs of the gonadotrophin hormone-releasing hormone neuronal system,” Journal of Neuroendocrinology, vol. 18, no. 2, pp. 79–95, 2006.
[13]
C. Kyratsas, C. Dalla, E. Anderzhanova et al., “Experimental evidence for sildenafil's action in the central nervous system: dopamine and serotonin changes in the medial preoptic area and nucleus accumbens during sexual arousal,” The Journal of Sexual Medicine, vol. 10, no. 3, pp. 719–729, 2012.
[14]
J. M. Dominguez and E. M. Hull, “Dopamine, the medial preoptic area, and male sexual behavior,” Physiology & Behavior, vol. 86, no. 3, pp. 356–368, 2005.
[15]
M. D. Graham and J. G. Pfaus, “Differential effects of dopamine antagonists infused to the medial preoptic area on the sexual behavior of female rats primed with estrogen and progesterone,” Pharmacology Biochemistry and Behavior, vol. 102, no. 4, pp. 532–539, 2012.
[16]
M. M. Perez-Delgado, T. Gonzalez-Hernandez, P. G. Serrano-Aguilar, et al., “Effects of hormone deprivation on the karyometric development of the medial and lateral preoptic area of the male mouse. I. Neonatal castration,” Journal für Hirnforschung, vol. 28, no. 2, pp. 125–131, 1987.
[17]
M. L. Addison and E. F. Rissman, “Sexual dimorphism of growth hormone in the hypothalamus: regulation by estradiol,” Endocrinology, vol. 153, no. 4, pp. 1898–1907, 2012.
[18]
C. Orikasa and Y. Sakuma, “Estrogen configures sexual dimorphism in the preoptic area of C57BL/6J and ddN strains of mice,” Journal of Comparative Neurology, vol. 518, no. 17, pp. 3618–3629, 2010.
[19]
G. B. Wislocki and L. S. King, “The permeability of the Hypophysis and Hypothalamus to vital dyes, with a study of the hypophyseal vascular supply,” American Journal of Anatomy, vol. 58, no. 2, pp. 421–472, 1936.
[20]
H. H?fer, “Zur Morphologie der circumventricul?ren Organe des Zwischenhirnes der S?ugetiere,” Zoologische Anzeiger, vol. 22, pp. 202–251, 1959.
[21]
A. Casta?eyra-Perdomo, G. Meyer, and R. Ferres-Torres, “The early development of the human subcommissural organ,” Journal of Anatomy, vol. 143, pp. 195–200, 1985.
[22]
A. Casta?eyra-Perdomo, G. Meyer, and D. J. Heylings, “Early development of the human area postrema and subfornical organ,” The Anatomical Record, vol. 232, no. 4, pp. 612–619, 1992.
[23]
A. A. Vieira, D. B. Nahey, and J. P. Collister, “Role of the organum vasculosum of the lamina terminalis for the chronic cardiovascular effects produced by endogenous and exogenous ANG II in conscious rats,” American Journal of Physiology, vol. 299, no. 6, pp. R1564–R1571, 2010.
[24]
L. Teixeira, F. Guimiot, C. Dodé et al., “Defective migration of neuroendocrine GnRH cells in human arrhinencephalic conditions,” The Journal of Clinical Investigation, vol. 120, no. 10, pp. 3668–3672, 2010.
[25]
B. Krisch, “The distribution of LHRH in the hypothalamus of the thirsting rat. A light and electron microscopic immunocytochemical study,” Cell and Tissue Research, vol. 186, no. 1, pp. 135–148, 1978.
[26]
F. R. Westwood, “The female rat reproductive cycle: a practical histological guide to staging,” Toxicologic Pathology, vol. 36, no. 3, pp. 375–384, 2008.
[27]
G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, Elservier Science, California, Calif, USA, 4th edition, 1998.
[28]
G. Paxinos and K. B. J. Franklin, The Mouse Brain in Stereotaxic Coordinates, Academic Press, Elservier Science, California, Calif, USA, 2nd edition, 2001.
[29]
Allen brain mouse atlas, 2012. Allen Institute for Brain Science, 2012, http://mouse.brain-map.org/static/atlas.
[30]
P. R. Hof, W. G. Young, F. E. Bloom, P. V. Belichenko, and M. R. Celio, Comparative Cytoarchitectonic Atlas of the C57BL/6 and 129/Sv Mouse Brains, Elsevier, New York, NY, USA, 2000.
[31]
R. E. Campbell, S. K. Han, and A. E. Herbison, “Biocytin filling of adult gonadotropin-releasing hormone neurons in situ reveals extensive, spiny, dendritic processes,” Endocrinology, vol. 146, no. 3, pp. 1163–1169, 2005.
[32]
E. C. Cottrell, R. E. Campbell, S. K. Han, and A. E. Herbison, “Postnatal remodeling of dendritic structure and spine density in gonadotropinreleasing hormone neurons,” Endocrinology, vol. 147, no. 8, pp. 3652–3661, 2006.
[33]
R. E. Campbell, G. Gaidamaka, S. K. Han, and A. E. Herbison, “Dendro-dendritic bundling and shared synapses between gonadotropin- releasing hormone neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 26, pp. 10835–10840, 2009.
[34]
J. S. Kizer, M. Palkovits, and M. J. Brownstein, “Releasing factors in the circumventricular organs of the rat brain,” Endocrinology, vol. 98, no. 2, pp. 311–317, 1976.
[35]
T. J. Stevenson and G. F. Ball, “Anatomical localization of the effects of reproductive state, castration, and social milieu on cells immunoreactive for gonadotropin-releasing hormone-I in male European starlings (Sturnus vulgaris),” Journal of Comparative Neurology, vol. 517, no. 2, pp. 146–155, 2009.