Background. The complex architecture of the right atrium, crista terminalis (CT), and the musculi pectinati (MP) poses enormous challenges in electrophysiology and cardiac conduction. Few studies have been undertaken to substantiate the gross features of MP, in relation to the CT, but there is still scarcity of data regarding this. We tried to reinvestigate the gross arrangement of muscle bundles in the right atrium. Methods. Utilizing 151 human hearts and orientation of MP and its variations and relationship to the CT were investigated along with taenia sagittalis (TS). Patterns of MP were grouped in 6 categories and TS under three groups. Result. A plethora of variations were observed. Analysis of all the specimen revealed that 68 samples (45%) were of type 1 category and 27 (18%) fell into type 2 category. Prominent muscular columns were reported in 12 samples (8%). 83 samples (55%) presented with a single trunk of TS. Multiple trunks of TS were reported in 38 samples (25%). Conclusion. Samples with type 6 MP and type B/type C TS, which have a more complex arrangement of fibers, have a tendency to be damaged during cardiac catheterization. Nonetheless, the area as a whole is extremely significant considering the pragmatic application during various cardiac interventions. 1. Introduction The crista terminalis (CT) is a well-defined fibromuscular ridge formed by the junction of the sinus venosus and primitive right atrium that extends along the posterolateral aspect of the right atrial wall [1]. It originates from the atrial septal wall medially, passes anterior to the orifice of the superior vena cava (SVC), descends posteriorly and laterally, and then turns anteriorly to skirt the right side of the orifice of the inferior vena cava (IVC). It is an important anatomic landmark due to its close association with sinoatrial nodal artery and the origin of the musculi pectinati (MP, pectinate muscles). The MP are muscular ridges that extend anterolaterally from the CT to reach the auricle and may present in a number of variable forms and shapes/sizes. The largest and most prominent MP forming the bridge of the sulcus terminalis internally is called taenia sagittalis (TS), literally meaning sagittal worm [2]. Occasionally, CT and the MP can be prominent, thus mimicking right atrial mass like a pseudomass, tumor, thrombus, or vegetation. An understanding of the anatomy and proper identification helps in avoiding misdiagnosis [1]. The MP with highly trabeculated muscle fibers predispose to arrhythmias. Moreover, prominent muscular columns with velamentous MP
References
[1]
A. Salustri, S. Bakir, A. Sana, P. Lange, and W. A. Al Mahmeed, “Prominent crista terminalis mimicking a right atrial mass: case report,” Cardiovascular Ultrasound, vol. 8, no. 1, article 47, 2010.
[2]
M. Loukas, R. S. Tubbs, J. M. Tongson et al., “The clinical anatomy of the crista terminalis, pectinate muscles and the teniae sagittalis,” Annals of Anatomy, vol. 190, no. 1, pp. 81–87, 2008.
[3]
D. Sánchez-Quintana, R. H. Anderson, J. A. Cabrera et al., “The terminal crest: morphological features relevant to electrophysiology,” Heart, vol. 88, no. 4, pp. 406–411, 2002.
[4]
K. Wang, S. Y. Ho, D. G. Gibson, and R. H. Anderson, “Architecture of atrial musculature in humans,” British Heart Journal, vol. 73, no. 6, pp. 559–565, 1995.
[5]
M. C. Rusu, “The valve of the superior vena cava—the supernumerary structure of the precaval segment of the crista terminalis,” Folia Morphologica, vol. 66, no. 4, pp. 303–306, 2007.
[6]
M. Akcay, E. S. Bilen, M. Bilge, T. Durmaz, and M. Kurt, “Prominent crista terminalis: as an anatomic structure leading to atrial arrhythmias and mimicking right atrial mass,” Journal of the American Society of Echocardiography, vol. 20, no. 2, pp. 197.e9–197.e10, 2007.
[7]
R. Becker, A. Bauer, S. Metz et al., “Intercaval block in normal canine hearts role of the terminal crest,” Circulation, vol. 103, no. 20, pp. 2521–2526, 2001.
[8]
K. Mizumaki, A. Fujiki, H. Nagasawa et al., “Relation between transverse conduction capability and the anatomy of the crista terminalis in patients with atrial flutter and atrial fibrillation—analysis by intracardiac echocardiography,” Circulation Journal, vol. 66, no. 12, pp. 1113–1118, 2002.
[9]
J. E. Olgin, J. M. Kalman, A. P. Fitzpatrick, and M. D. Lesh, “Role of right atrial endocardial structures as barriers to conduction during human type I atrial flutter: activation and entrainment mapping guided by intracardiac echocardiography,” Circulation, vol. 92, no. 7, pp. 1839–1848, 1995.
[10]
W. S. Ellis, A. Sippensgroenewegen, D. M. Auslander, and M. D. Lesh, “The role of the crista terminalis in atrial flutter and fibrillation: a computer modeling study,” Annals of Biomedical Engineering, vol. 28, no. 7, pp. 742–754, 2000.
[11]
J. M. Kalman, J. E. Olgin, M. R. Karch, M. Hamdan, R. J. Lee, and M. D. Lesh, “Cristal tachycardias': origin of right atrial tachycardias from the crista terminalis identified by intracardiac echocardiography,” Journal of the American College of Cardiology, vol. 31, no. 2, pp. 451–459, 1998.
[12]
Q.-Y. Zhao, H. Huang, Y.-H. Tang et al., “Relationship between autonomic innervation in crista terminalis and atrial arrhythmia,” Journal of Cardiovascular Electrophysiology, vol. 20, no. 5, pp. 551–557, 2009.
[13]
N. Saoudi, D. Ercyies, and F. Anselme, “Why do patients develop atrial flutter? Is this crista terminalis geometry?” Pacing and Clinical Electrophysiology, vol. 32, no. 7, pp. 866–867, 2009.
[14]
Y. H. Siew, R. H. Anderson, and D. Sánchez-Quintana, “Gross structure of the atriums: more than an anatomic curiosity?” Pacing and Clinical Electrophysiology, vol. 25, no. 3, pp. 342–350, 2002.
[15]
T.-A. Matsuyama, S. Inoue, Y. Kobayashi et al., “Anatomical diversity and age-related histological changes in the human right atrial posterolateral wall,” Europace, vol. 6, no. 4, pp. 307–315, 2004.
[16]
B. Schumacher, W. Jung, H. Schmidt et al., “Transverse conduction capabilities of the crista terminalis in patients with atrial flutter and atrial fibrillation,” Journal of the American College of Cardiology, vol. 34, no. 2, pp. 363–373, 1999.
[17]
T.-Y. Liu, C.-T. Tai, B.-H. Huang et al., “Functional characterization of the crista terminalis in patients with atrial flutter: implications for radiofrequency ablation,” Journal of the American College of Cardiology, vol. 43, no. 9, pp. 1639–1645, 2004.
[18]
A. Arenal, J. Almendral, J. M. Alday et al., “Rate-dependent conduction block of the crista terminalis in patients with typical atrial flutter: influence on evaluation of cavotricuspid isthmus conduction block,” Circulation, vol. 99, no. 21, pp. 2771–2778, 1999.
[19]
N. D'Amato, O. Pierfelice, and C. D'Agostino, “Crista terminalis bridge: a rare variant mimicking right atrial mass,” European Journal of Echocardiography, vol. 10, no. 3, pp. 444–445, 2009.
[20]
G. Seemann, C. H?per, F. B. Sachse, O. D?ssel, A. V. Holden, and H. Zhang, “Heterogeneous three-dimensional anatomical and electrophysiological model of human atria,” Philosophical Transactions of the Royal Society A, vol. 364, no. 1843, pp. 1465–1481, 2006.
[21]
T.-J. Wu, M. Yashima, F. Xie et al., “Role of pectinate muscle bundles in the generation and maintenance of intra-atrial reentry: potential implications for the mechanism of conversion between atrial fibrillation and atrial flutter,” Circulation Research, vol. 83, no. 4, pp. 448–462, 1998.