全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Anatomy  2014 

Neural Structures within Human Meniscofemoral Ligaments: A Cadaveric Study

DOI: 10.1155/2014/719851

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aim. To investigate the existence of neural structures within the meniscofemoral ligaments (MFLs) of the human knee. Methods. The MFLs from 8 human cadaveric knees were harvested. 5?μm sections were H&E-stained and examined under light microscopy. The harvested ligaments were then stained using an S100 monoclonal antibody utilising the ABC technique to detect neural components. Further examination was performed on 60–80?nm sections under electron microscopy. Results. Of the 8 knees, 6 were suitable for examination. From these both MFLs existed in 3, only anterior MFLs were present in 2, and an isolated posterior MFL existed in 1. Out of the 9?MFLs, 4 demonstrated neural structures on light and electron microscopy and this was confirmed with S100 staining. The ultrastructure of these neural components was morphologically similar to mechanoreceptors. Conclusion. Neural structures are present in MFLs near to their meniscal attachments. It is likely that the meniscofemoral ligaments contribute not only as passive secondary restraints to posterior draw but more importantly to proprioception and may therefore play an active role in providing a neurosensory feedback loop. This may be particularly important when the primary restraint has reduced function as in the posterior cruciate ligament—deficient human knee. 1. Introduction The knee joint is stabilised by passive restraints, such as the capsule and ligaments, as well as active restraints. It has been suggested that the ligaments of the knee may contribute to active stability by providing proprioceptive input to the nervous system, which in turn would adjust muscle contraction accordingly [1]. The anatomy of the meniscofemoral ligament (MFL) has previously been described [2]; the femoral origins of the anterior MFL are distal to the PCL, close to the articular cartilage, whereas the posterior MFL arises proximal to the PCL. They are both inserted distally to the posterior horn of the lateral meniscus. It has been shown that the mechanical role of the meniscofemoral ligament (MFL) is to resist anteroposterior and rotatory laxity in the knee. This is the most important when the primary stabiliser of posterior laxity, the posterior cruciate ligament, is deficient [3]. Proprioceptive nerve endings were initially thought to be located in muscles (as muscle spindles) [4]. More recently, mechanoreceptors have been found in the cruciate ligaments of both animals and humans [1, 5–7]. Kennedy et al. found mechanoreceptors within multiple clefts at the tibial attachment of the anterior cruciate ligament (ACL), within

References

[1]  R. A. Schultz, D. C. Miller, C. S. Kerr, and L. Micheli, “Mechanoreceptors in human cruciate ligaments: a histological study,” The Journal of Bone & Joint Surgery A, vol. 66, no. 7, pp. 1072–1076, 1984.
[2]  A. A. Amis, C. M. Gupte, A. M. J. Bull, and A. Edwards, “Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 14, no. 3, pp. 257–263, 2006.
[3]  C. M. Gupte, A. M. J. Bull, R. D. Thomas, and A. A. Amis, “The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee,” The Journal of Bone & Joint Surgery B, vol. 85, no. 5, pp. 765–773, 2003.
[4]  P. E. Roland, “Do muscular receptors in man evoke sensations of tension and kinaesthesia?” Brain Research, vol. 99, no. 1, pp. 162–165, 1975.
[5]  M. J. Schutte, E. J. Dabezies, M. L. Zimny, and L. T. Happel, “Neural anatomy of the human anterior cruciate ligament,” The Journal of Bone & Joint Surgery A, vol. 69, no. 2, pp. 243–247, 1987.
[6]  B. L. O'Connor, “The mechanoreceptor innervation of the posterior attachments of the lateral meniscus of the dog knee joint,” Journal of Anatomy, vol. 138, no. 1, pp. 15–26, 1984.
[7]  H. Johansson, P. Sjolander, and P. Sojka, “A sensory role for the cruciate ligaments,” Clinical Orthopaedics and Related Research, no. 268, pp. 161–178, 1991.
[8]  J. C. Kennedy, I. J. Alexander, and K. C. Hayes, “Nerve supply of the human knee and its functional importance,” American Journal of Sports Medicine, vol. 10, no. 6, pp. 329–335, 1982.
[9]  L. A. Ramos, D. Astur, J. V. Novaretti et al., “An anatomic study of the posterior septum of the knee,” Arthroscopy, vol. 28, no. 1, pp. 100–104, 2012.
[10]  M. E. del Valle, S. F. Harwin, A. Maestro, A. Murcia, and J. A. Vega, “Immunohistochemical analysis of mechanoreceptors in the human posterior cruciate ligament: a demonstration of its proprioceptive role and clinical relevance,” Journal of Arthroplasty, vol. 13, no. 8, pp. 916–922, 1998.
[11]  P. G. Katonis, A. P. Assimakopoulos, M. V. Agapitos, and E. I. Exarchou, “Mechanoreceptors in the posterior cruciate ligament. Histologic study on cadaver knees,” Acta Orthopaedica Scandinavica, vol. 62, no. 3, pp. 276–278, 1991.
[12]  M. A. R. Freeman and B. Wyke, “The innervation of the knee joint: an anatomical and histological study in the cat,” Journal of Anatomy, vol. 101, no. 3, pp. 505–532, 1967.
[13]  I. Palmer, “Pathophysiology of the medical ligament of the knee joint,” Acta Chirurgica Scandinavica, vol. 115, no. 4, pp. 312–318, 1958.
[14]  W. G. Clancy Jr., K. D. Shelbourne, G. B. Zoellner, J. S. Keene, B. Reider, and T. D. Rosenberg, “Treatment of knee joint instability secondary to rupture of the posterior cruciate ligament. Report of a new procedure,” The Journal of Bone & Joint Surgery A, vol. 65, no. 3, pp. 310–322, 1983.
[15]  J. H. Ahn, Y. S. Chung, and I. Oh, “Arthroscopic posterior cruciate ligament reconstruction using the posterior trans-septal portal,” Arthroscopy, vol. 19, no. 1, pp. 101–107, 2003.
[16]  N. Adachi, M. Ochi, Y. Uchio, J. Iwasa, K. Ryoke, and M. Kuriwaka, “Mechanoreceptors in the anterior cruciate ligament contribute to the joint position sense,” Acta Orthopaedica Scandinavica, vol. 73, no. 3, pp. 330–334, 2002.
[17]  D. J. Dandy and R. J. Pusey, “The long-term results of unrepaired tears of the posterior cruciate ligament,” The Journal of Bone & Joint Surgery B, vol. 64, no. 1, pp. 92–94, 1982.
[18]  J. M. Parolie and J. A. Bergfeld, “Long-term results of nonoperative treatment of isolated posterior cruciate ligament injuries in the athlete,” American Journal of Sports Medicine, vol. 14, no. 1, pp. 35–38, 1986.
[19]  C. D. Harner and J. H?her, “Evaluation and treatment of posterior cruciate ligament injuries,” American Journal of Sports Medicine, vol. 26, no. 3, pp. 471–482, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133