A large number of publications describe the determination of arsenic in “environmental” samples in the broadest sense, a substantial subset of which focus on plant-based foodstuffs. There is a considerable interest in the inorganic arsenic content of food, especially rice, as there is recent evidence that concentrations may be high enough to exceed acceptable risk thresholds. The methodology for the determination of arsenic in rice is critically evaluated and results (a) for a rice flour reference material (National Institute of Standards SRM 1568a, certified only for total arsenic) and (b) a recent proficiency test (run by the European Commission's Joint Research Centre Institute for Reference Materials and Measurement) are examined. Difficulties with this particular analysis may lie in the sample preparation stages, over which there is still disagreement with regard to species stability, though a simple, hot-water extraction may be sufficient. High performance liquid chromatography separations with plasma-source mass spectrometry detection are popular; however, chromatographic separations are often not adequately described, the enhancement effect of carbon-containing species is often overlooked, and the fate of chlorine-containing species, responsible for an isobaric overlap interference, often obscure. Compound-dependent responses, for which there is a plenty of evidence, are almost never acknowledged or discussed. 1. Introduction Writing reviews of some aspect of the measurement of arsenic compounds as described in the burgeoning literature is a popular activity. The field is too large to be encompassed by any one review article, and so the authors of each recent review have defined a subsample of the literature on which to focus; however, there is significant overlap, as several writers have chosen the topic of the measurement of arsenic compounds in environmental samples. In the paper that you are reading right now, the focus will be on an evaluation of the current status of our ability to measure one or more defined arsenic compounds of interest in a variety of materials, but with some emphasis on foodstuffs and a particular emphasis on rice. And to simplify matters even more, particular attention will be given to procedures in which the arsenic compounds are separated by high performance liquid chromatography (HPLC) and detected and quantified by inductively coupled plasma mass spectrometry (ICP-MS). A further restriction of a 5-year time horizon (approximately) has also been imposed. As will be discussed below, there is currently considerable
References
[1]
S. Ahuja, Ed., Arsenic Contamination of Groundwater: Mechanism, Analysis and Remediation, John Wiley & Sons, Hoboken, NJ, USA, 2008.
[2]
K. R. Henke, Ed., Arsenic Environmental Chemistry, Health Threats and Waste Treatment, John Wiley & Sons, Chichester, UK, 2009.
[3]
R. Ravenscroft, H. Banner, and K. Richards, Arsenic Pollution, A Global Synthesis, Wiley-Blackwell, Chichester, UK, 2009.
[4]
A. A. Meharg, Venomous Earth, How Arsenic Caused the World’s Worst Mass Poisoning, Macmillan, Basingstoke, UK, 2005.
[5]
W. R. Cullen, Is Arsenic An Aphrodisiac? the Sociochemistry of An Element, Royal Society of Chemistry, Cambridge, UK, 2008.
[6]
P. K. Dasgupta, “Editorial,” Talanta, vol. 58, no. 1, pp. 1–2, 2002.
[7]
B. K. Mandal and K. T. Suzuki, “Arsenic round the world: a review,” Talanta, vol. 58, no. 1, pp. 201–235, 2002.
[8]
Kaye and Laby, “Table of Physical and Chemical Constants,” January 2012, http://www.kayelaby.npl.co.uk/chemistry/3_1/3_1_3.html.
[9]
CRC Handbook of Chemistry and Physics, CRC Press, 92nd edition, 2011.
[10]
H. Haraguchi, “Metallomics as integrated biometal science,” Journal of Analytical Atomic Spectrometry, vol. 19, pp. 5–14, 2004.
[11]
W. R. Cullen, “Arsenophobia: a connection between the deaths of infants and Napoleon I,” in Is Arsenic an Aphrodisiac? The Sociochemistry of an Element, pp. 145–161, Royal Society of Chemistry, Cambridge, UK, 2008.
[12]
A. Lugli, I. Zlobec, G. Singer, A. K. Lugli, L. M. Terracciano, and R. M. Genta, “Napoleon Bonaparte's gastric cancer: a clinicopathologic approach to staging, pathogenesis, and etiology,” Nature Clinical Practice Gastroenterology and Hepatology, vol. 4, no. 1, pp. 52–57, 2007.
[13]
H. Garelick and H. Jones, Eds., Reviews of Environmental Contamination, vol. 197 of Reviews of Environmental Contamination and Toxicology, Springer, 2002.
[14]
H. Garelick, H. Jones, A. Dybowska, and E. Valsami-Jones, “Arsenic pollution sources,” Reviews of Environmental Contamination and Toxicology, vol. 197, pp. 17–60, 2008.
[15]
M. M. Rahman, F. Rahman, L. Sansom, R. Naidu, and O. Schmidt, “Arsenic interactions with lipid particles containing iron,” Environmental Geochemistry and Health, vol. 31, no. 1, pp. 201–206, 2009.
[16]
M. M. Rahman, R. Naidu, and P. Bhattacharya, “Arsenic contamination in groundwater in the Southeast Asia region,” Environmental Geochemistry and Health, vol. 31, no. 1, pp. 9–21, 2009.
[17]
N. I. Khan, G. Owens, D. Bruce, and R. Naidu, “Human arsenic exposure and risk assessment at the landscape level: a review,” Environmental Geochemistry and Health, vol. 31, no. 1, pp. 143–166, 2009.
[18]
M. M. Rahman, J. C. Ng, and R. Naidu, “Chronic exposure of arsenic via drinking water and its adverse health impacts on humans,” Environmental Geochemistry and Health, vol. 31, no. 1, pp. 189–200, 2009.
[19]
M. M. Rahman, Z.-L. Chen, and R. Naidu, “Extraction of arsenic species in soils using microwave-assisted extraction detected by ion chromatography coupled to inductively coupled plasma mass spectrometry,” Environmental Geochemistry and Health, vol. 31, no. 1, pp. 93–102, 2009.
[20]
F. Rahman, Z.-L. Chen, and R. Naidu, “A comparative study of the extractability of arsenic species from silverbeet and amaranth vegetables,” Environmental Geochemistry and Health, vol. 31, no. 1, pp. 103–113, 2009.
[21]
W. R. Cullen, “Arsenic where you least expect it,” in Is Arsenic an Aphrodisiac? The Sociochemistry of an Element, p. 71, Royal Society of Chemistry, Cambridge, UK, 2008.
[22]
H. F. Hemond and H. M. Solo-Gabriele, “Children's exposure to arsenic from CCA-treated wooden decks and playground structures,” Risk Analysis, vol. 24, no. 1, pp. 51–64, 2004.
[23]
J. S. Tsuji, L. J. Yost, L. M. Barraj, C. G. Scrafford, and P. J. Mink, “Use of background inorganic arsenic exposures to provide perspective on risk assessment results,” Regulatory Toxicology and Pharmacology, vol. 48, no. 1, pp. 59–68, 2007.
[24]
D. Amarasiriwardena, “Teaching analytical atomic spectroscopy advances in an environmental chemistry class using a project-based laboratory approach: investigation of lead and arsenic distributions in a lead arsenate contaminated apple orchard,” Analytical and Bioanalytical Chemistry, vol. 388, no. 2, pp. 307–314, 2007.
[25]
P. N. Williams, A. Raab, J. Feldmann, and A. A. Meharg, “Market basket survey shows elevated levels of as in South Central U.S. processed rice compared to California: consequences for human dietary exposure,” Environmental Science and Technology, vol. 41, no. 7, pp. 2178–2183, 2007.
[26]
B. Hua, W. G. Yan, J. M. Wang, B. L. Deng, and J. Yang, “Arsenic accumulation in rice grains: effects of cultivars and water management practices,” Environmental Engineering Science, vol. 28, no. 8, pp. 591–596, 2011.
[27]
R. A. Schoof, L. J. Yost, J. Eickhoff et al., “A market basket survey of inorganic arsenic in food,” Food and Chemical Toxicology, vol. 37, no. 8, pp. 839–846, 1999.
[28]
A. A. Meharg and F.-J. Zhao, Arsenic & Rice, Springer, Dordrecht, Germany, 2012.
[29]
“European Food Safety Authority Panel on Contaminants in the Food Chain (CONTAM), scientific opinion on arsenic in food,” EFSA Journal, vol. 7, p. 1351, 2009, http://www.efsa.europa.eu/.
[30]
D. M. Meacher, D. B. Menzel, M. D. Dillencourt et al., “Estimation of multimedia inorganic arsenic intake in the U.S. population,” Human and Ecological Risk Assessment, vol. 8, no. 7, pp. 1697–1721, 2002.
[31]
J. Xue, V. Zartarian, S.-W. Wang, S. V. Liu, and P. Georgopoulos, “Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003-2004 NHANES data,” Environmental Health Perspectives, vol. 118, no. 3, pp. 345–350, 2010.
[32]
A. A. Meharg and F.-J. Zhao, “Arsenic in rice grain,” in Arsenic & Rice, chapter 2, pp. 11–30, Springer, Dordrecht, Germany, 2012.
[33]
Consumer Reports, “Arsenic in your food: our findings show real need for federal standards for this toxin,” October 2012, http://www.consumerreports.org/cro/magazine/2012/11/arsenic-in-your-food/index.htm.
[34]
“Joint FAO/WHO expert committee on food additives, seventy-second meeting, Rome, Italy,” February 2010, summary and conclusions Issued 16th March 2010, http://www.who.int/foodsafety/chem/summary72_rev.pdf.
[35]
US Department of Food and Agriculture, “Arsenic In Rice: Full Analytical Results From Rice/Rice Product Sampling,” September 2012, http://www.fda.gov/forconsumers/consumerupdates/ucm319827.htm.
[36]
K. A. Francesconi, “Toxic metals species and food regulations-making a healthy choice,” Analyst, vol. 13, pp. 17–20, 2007.
[37]
D. Gilbert-Diamond, K. L. Cottingham, J. F. Gruber, et al., “Rice consumption leads to arsenic exposure in US women,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 20656–20660, 2011.
[38]
D. T. Heitkemper, K. M. Kubachka, P. R. Halpin, M. N. Allen, and N. V. Shockey, “Survey of total arsenic and arsenic speciation in us-produced rice as a reference point for evaluating change and future trends,” Food Additives and Contaminants B, vol. 2, no. 2, pp. 112–120, 2009.
[39]
A. A. Meharg and A. Raab, “Getting to the bottom of arsenic standards and guidelines,” Environmental Science and Technology, vol. 44, no. 12, pp. 4395–4399, 2010.
[40]
D. M. Templeton, F. Ariese, R. Cornelis et al., “Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC recommendations 2000),” Pure and Applied Chemistry, vol. 72, no. 8, pp. 1453–1470, 2000.
[41]
K. A. Francesconi and D. Kuehnelt, “Determination of arsenic species: a critical review of methods and applications, 2000–2003,” Analyst, vol. 129, no. 5, pp. 373–395, 2004.
[42]
A. Gonzalvez, M. L. Cervera, S. Armenta, and M. de la Guardia, “A review of non-chromatographic methods for speciation analysis,” Analytica Chimica Acta, vol. 636, no. 2, pp. 129–157, 2009.
[43]
H. M. Anawar, “Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry,” Talanta, vol. 88, pp. 30–42, 2012.
[44]
A. D'Ulivo, J. Dědina, Z. Mester, R. E. Sturgeon, Q. Q. Wang, and B. Welz, “Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC technical report),” Pure and Applied Chemistry, vol. 83, no. 6, pp. 1283–1340, 2011.
[45]
M. Popp, S. Hann, and G. Koellensperger, “Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry—a review,” Analytica Chimica Acta, vol. 668, no. 2, pp. 114–129, 2010.
[46]
R. G. Brennan, S. A. E. O'Brien Murdock, M. Farmand et al., “Nano-HPLC-inductively coupled plasma mass spectrometry for arsenic speciation,” Journal of Analytical Atomic Spectrometry, vol. 22, no. 9, pp. 1199–1205, 2007.
[47]
I. Komorowicz and D. Bara?kiewicz, “Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—last decade review,” Talanta, vol. 84, no. 2, pp. 247–261, 2011.
[48]
B. Radke, L. Jewell, and J. Namiesnik, “Analysis of arsenic species in environmental samples,” Critical Reviews in Analytical Chemistry, vol. 42, pp. 162–183, 2012.
[49]
K. K. Kroening, R. N. Easter, D. D. Richardson, S. A. Willison, and J. A. Caruso, Analysis of Chemical Warfare Degradation Products, John Wiley & Sons, New York, NY, USA, 2011.
[50]
R. Cornelis, K. G. Heumann, J. Caruso, and H. Crews, Eds., Handbook of Elemental Speciation: Techniques and Methodology, John Wiley & Sons, Chichester, UK, 2003.
[51]
R. Cornelis, K. G. Heumann, J. Caruso, and H. Crews, Eds., Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine and Occupational Health, John Wiley & Sons, Chichester, UK, 2005.
[52]
“Detection limits, Atomic Spectroscopy, A Guide to Selecting the Appropriate Technique and System, Perkin Elmer, p. 12,” 2012, http://www.perkinelmer.com/Technologies/Atomic-Spectroscopy/cat1/NAV_04_TCH_Technologies_001/cat2/NAV_TCH_Atomic%20Spectroscopy_001.
[53]
D. Sánchez-Rodas, W. T. Corns, B. Chen, and P. B. Stockwell, “Atomic fluorescence spectrometry: a suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury,” Journal of Analytical Atomic Spectrometry, vol. 25, no. 7, pp. 933–946, 2010.
[54]
D. E. Mays and A. Hussam, “Voltammetric methods for determination and speciation ofinorganic arsenic in the environment—a review,” Analytica Chimica Acta, vol. 646, pp. 6–16, 2009.
[55]
J. H. T. Luong, E. Majid, and K. B. Male, “Analytical tools for monitoring arsenic in the environment,” The Open Analytical Chemistry Journal, vol. 1, pp. 7–14, 2007.
[56]
D. Q. Hung, O. Nekrassova, and R. G. Compton, “Analytical methods for inorganic arsenic in water: a review,” Talanta, vol. 64, no. 2, pp. 269–277, 2004.
[57]
T. Narukawa, A. Hioki, and K. Chiba, “Speciation and monitoring test for inorganic arsenic in white rice flour,” Journal of Agricultural and Food Chemistry, vol. 60, pp. 1122–1127, 2012.
[58]
D. T. Heitkemper, N. P. Vela, K. R. Stewart, and C. S. Westphal, “Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 16, no. 4, pp. 299–306, 2001.
[59]
I. Pizarro, M. Gómez, C. Cámara, and M. A. Palacios, “Arsenic speciation in environmental and biological samples: extraction and stability studies,” Analytica Chimica Acta, vol. 495, pp. 85–98, 2003.
[60]
U. Kohlmeyer, E. Jantzen, J. Kuballa, and S. Jakubik, “Benefits of high resolution IC-ICP-MS for the routine analysis of inorganic and organic arsenic species in food products of marine and terrestrial origin,” Analytical and Bioanalytical Chemistry, vol. 377, no. 1, pp. 6–13, 2003.
[61]
M. D’Amato, G. Forte, and S. Caroli, “Identification and quantification of major species of arsenic in rice,” Journal of AOAC International, vol. 87, pp. 238–243, 2004.
[62]
N. P. Vela and D. T. Heitkemper, “Total arsenic determination and speciation in infant food products by ion-chromatography inductively coupled plasma-mass spectrometry,” Journal of AOAC International, vol. 87, no. 1, pp. 244–252, 2004.
[63]
P. N. Williams, A. H. Price, A. Raab, S. A. Hossain, J. Feldmann, and A. A. Meharg, “Variation in arsenic speciation and concentration in paddy rice related to dietary exposure,” Environmental Science and Technology, vol. 39, no. 15, pp. 5531–5540, 2005.
[64]
E. Sanz, R. Mu?oz-Olivas, and C. Cámara, “Evaluation of a focused sonication probe for arsenic speciation in environmental and biological samples,” Journal of Chromatography A, vol. 1097, pp. 1–8, 2005.
[65]
E. Sanz, R. Mu?oz-Olivas, and C. Cámara, “A rapid and novel alternative to conventional sample treatment for arsenic speciation in rice using enzymatic ultrasonic probe,” Analytica Chimica Acta, vol. 535, no. 1-2, pp. 227–235, 2005.
[66]
A. H. Ackerman, P. A. Creed, A. N. Parks et al., “Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice,” Environmental Science and Technology, vol. 39, no. 14, pp. 5241–5246, 2005.
[67]
S.-H. Nam, J. Cheng, W. R. Mindak, and S. G. Capar, “Preliminary results of extraction, separation and quantitation of arsenic species in food and dietary supplements by HPLC-ICP-MS,” Bulletin of the Korean Chemical Society, vol. 27, no. 6, pp. 903–908, 2006.
[68]
E. Sanz, R. Mu?oz-Olivas, C. Cámara, M. K. Sengupta, and S. Ahamed, “Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of Middle and Lower Ganga plain,” Journal of Environmental Science and Health A, vol. 42, no. 12, pp. 1695–1705, 2007.
[69]
M. Resano, E. García Ruiz, V. G. Mihucz, A. M. Móricz, Gy. Záray, and F. Vanhaecke, “Rapid screening method for arsenic speciation by combining thin layer chromatography and laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 22, no. 9, pp. 1158–1162, 2007.
[70]
M. N. Matos Reyes, M. L. Cervera, R. C. Campos, and M. de la Guardia, “Determination of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in cereals by hydride generation atomic fluorescence spectrometry,” Spectrochimica Acta B, vol. 62, no. 9, pp. 1078–1082, 2007.
[71]
T. Narukawa, K. Inagaki, T. Kuroiwa, and K. Chiba, “The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS,” Talanta, vol. 77, no. 1, pp. 427–432, 2008.
[72]
Y. G. Zhu, G. X. Sun, M. Lei et al., “High percentage inorganic arsenic content of mining impacted and nonimpacted chinese rice,” Environmental Science and Technology, vol. 42, no. 13, pp. 5008–5013, 2008.
[73]
A. Signes, K. Mitra, F. Burló, and A. A. Carbonell-Barrachina, “Contribution of water and cooked rice to an estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India,” Food Additives and Contaminants A, vol. 25, no. 1, pp. 41–50, 2008.
[74]
J. L. Guzmán Mar, L. H. Reyes, G. M. M. Rahman, and H. M. S. Kingston, “Simultaneous extraction of arsenic and selenium species from rice products by microwave-assisted enzymatic extraction and analysis by ion chromatography-inductively coupled plasma-mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 57, no. 8, pp. 3005–3013, 2009.
[75]
G. X. Sun, P. N. Williams, Y. G. Zhu et al., “Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments,” Environment International, vol. 35, no. 3, pp. 473–475, 2009.
[76]
A. Raab, C. Baskaran, J. Feldmann, and A. A. Meharg, “Cooking rice in a high water to rice ratio reduces inorganic arsenic content,” Journal of Environmental Monitoring, vol. 11, no. 1, pp. 41–44, 2009.
[77]
A. J. Signes-Pastor, C. Deacon, R. O. Jenkins, P. I. Haris, A. A. Carbonell-Barrachina, and A. A. Meharg, “Arsenic speciation in Japanese rice drinks and condiments,” Journal of Environmental Monitoring, vol. 11, no. 11, pp. 1930–1934, 2009.
[78]
M. K. Sengupta and P. K. Dasgupta, “An automated hydride generation interface to ICP-MS for measuring total arsenic in environmental samples,” Analytical Chemistry, vol. 81, pp. 9737–9743, 2009.
[79]
M.-K. Paik, M.-J. Kim, W.-I. Kim, et al., “Determination of arsenic species in polished rice using a methanol-water digestion method,” Journal of the Korean Society for Applied Biological Chemistry, vol. 53, pp. 8183–8188, 2010.
[80]
Y. He and Y. Zheng, “Assessment of in vivo bioaccessibility of arsenic in dietary rice by a mass balance approach,” Science of the Total Environment, vol. 408, pp. 1430–1436, 2010.
[81]
T. Nishimura, M. Hamano-Nagaoka, N. Sakakibara, T. Abe, Y. Maekawa, and T. Maitani, “Determination method for total arsenic and partial-digestion method with nitric acid for inorganic arsenic speciation in several varieties of rice,” Journal of the Food Hygienic Society of Japan, vol. 51, no. 4, pp. 178–181, 2010.
[82]
B. L. Batista, J. M. O. Souza, S. S. De Souza, and F. Barbosa Jr., “Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption,” Journal of Hazardous Materials, vol. 191, no. 1–3, pp. 342–348, 2011.
[83]
C.-Y. Tsai and S.-J. Jiang, “Microwave-assisted extraction and ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry for the speciation analysis of arsenic and selenium in cereals,” Analytical Sciences, vol. 27, no. 3, pp. 271–276, 2011.
[84]
V. Dufailly, M. Nicolas, J. Richoz-Payot, and E. Poitevin, “Validation of a method for arsenic speciation in food by ion-chromatography-inductively coupled plasma/mass spectrometry after ultrasonic-assisted enzymatic extraction,” Journal of AOAC International, vol. 94, pp. 947–958, 2011.
[85]
M. D'Amato, F. Aureli, S. Ciardullo, A. Raggi, and F. Cubadda, “Arsenic speciation in wheat and wheat products using ultrasound- and microwave-assisted extraction and anion exchange chromatography-inductively coupled plasma mass spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 26, no. 1, pp. 207–213, 2011.
[86]
C. Wu, Z. Ye, W. Shu, Y. Zhu, and M. Wong, “Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes,” The Journal of Experimental Botany, vol. 62, pp. 2889–2898, 2011.
[87]
H. R. Hansen, A. Raab, A. H. Price, et al., “Identification of tetramethylarsonium in rice grains with elevated arsenic content,” Journal of Environmental Monitoring, vol. 13, pp. 32–34, 2011.
[88]
G. Raber, N. Stock, P. Hanel, M. Murko, J. Navratilova, and K. A. Fransesconi, “An improved HLPC-ICPMS method for determining inorganic arsenic in food: application to rice, wheat and tuna fish,” Food Chemistry, vol. 134, pp. 524–532, 2012.
[89]
T. Llorente-Mirandes, J. Calderon, J. F. Lopez-Sanchez, F. Centrich, and R. Rubio, “A fully validated method for the determination of arsenic species in rice and infant cereal products,” Pure and Applied Chemistry, vol. 84, pp. 225–238, 2012.
[90]
P. Alava, T. Van de Wile, F. Tack, and G. Du Laing, “Extensive grinding and pressurized extraction with water are key points for effective and species preserving extraction of arsenic from rice,” Analytical Methods, vol. 4, pp. 1237–1243, 2012.
[91]
J.-H. Huang, P. Fecher, G. Ilgen, K.-N. Hu, and J. Yang, “Speciation of arsenite and arsenate in rice grain—verification of nitric acid based extraction method and mass sample survey,” Food Chemistry, vol. 130, pp. 453–459, 2012.
[92]
A. A. Ammann, “Arsenic speciation by gradient anion exchange narrow bore ion chromatography and high resolution inductively coupled plasma mass spectrometry detection,” Journal of Chromatography A, vol. 1217, no. 14, pp. 2111–2116, 2010.
General Requirements for the Competence of Testing and Calibration Laboratories, International Organization for Standardization/International Electrotechnical Commission, Geneva, Switzerland, 1st edition, 1999.
[95]
M. B. de la Calle, T. P. J. Linsinger, H. Emteborg, J. Charoud-Got, and I. Verbist, “EUR 24314 EN,” 2010, http://irmm.jrc.ec.europa.eu/EURLs/EURL_heavy_metals/interlaboratory_comparisons/imep-107/Pages/index.aspx.
[96]
M. B. de la Calle, H. Emteborg, T. P. J. Linsinger, et al., “Does the determination of inorganic arsenic in rice depend on the method?” Trends in Analytical Chemistry, vol. 30, pp. 641–651, 2011.
[97]
ISO Guide 35: Reference Materials-General and Statistical Principles For Certification, International Organization for Standardization, Geneva, Switzerland, 2006.
[98]
P. J. Lowthian and M. Thompson, “Bump-hunting for the proficiency tester—searching for multimodality,” Analyst, vol. 127, no. 10, pp. 1359–1364, 2002.
[99]
M. Thompson, “Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing,” Analyst, vol. 125, no. 3, pp. 385–386, 2000.
[100]
I. Baer, M. Baxter, V. Devesa et al., “Performance of laboratories in speciation analysis in seafood—case of methylmercury and inorganic arsenic,” Food Control, vol. 22, no. 12, pp. 1928–1934, 2011.
[101]
M. B. de la Calle, I. Baer, P. Robouch, et al., “Is it possible to agree on a value for inorganic arsenic in food? The outcome of IMEP-112,” Analytical and Bioanalytical Chemistry, vol. 404, pp. 2475–2488, 2012.
[102]
O. Butler, H. Evans, A. Fisher et al., “Atomic spectrometry updates: a 25-year retrospective,” Journal of Analytical Atomic Spectrometry, vol. 25, no. 10, pp. 1546–1566, 2010.
[103]
C. F. Harrington, R. Clough, H. R. Hansen, S. J. Hill, S. A. Pergantis, and J. F. Tyson, “Atomic spectrometry update. Elemental speciation,” Journal of Analytical Atomic Spectrometry, vol. 24, no. 8, pp. 999–1025, 2009.
[104]
R. Clough, L. R. Drennan-Harris, C. F. Harrington, S. J. Hill, and J. F. Tyson, “Atomic spectrometry update. Elemental speciation,” Journal of Analytical Atomic Spectrometry, vol. 27, pp. 1185–1224, 2012.
[105]
E. Voigtman, “Limits of detection and decision. Parts 1, 2, 3, and 4,” Spectrochimica Acta Part B, vol. 63, pp. 115–165, 2008.
[106]
E. Voigtman and K. T. Abraham, “True detection limits in an experimental linearly heteroscedastic system. Parts 1 and 2,” Spectrochimica Acta B, vol. 66, pp. 822–833, 2011.
[107]
E. H. Evans, C. D. Palmer, and C. M. M. Smith, “Atomic spectrometry update. Advances in atomic spectrometry and related techniques,” Journal of Analytical Atomic Spectrometry, vol. 27, pp. 909–927, 2012.
[108]
C. H. Arnaud, “Cautionary tale for food analysis: inappropriate methods skewed results for arsenic in apple juice,” Chemical & Engineering News, vol. 90, no. 35, p. 32, 2012.
[109]
P. Allain, L. Jaunault, Y. Mauras, J.-M. Mermet, and T. Delaporte, “Signal enhancement of elements due to the presence of carbon-containing compounds in inductively coupled plasma mass spectrometry,” Analytical Chemistry, vol. 63, pp. 1497–1498, 1991.
[110]
E. H. Larsen and S. Stürup, “Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation,” Journal of Analytical Atomic Spectrometry, vol. 9, no. 10, pp. 1099–1105, 1994.
[111]
K. Baba, T. Arao, Y. Maejima, E. Watanabe, H. Eun, and M. Ishizaka, “Arsenic speciation in rice and soil containing related compounds of chemical warfare agents,” Analytical Chemistry, vol. 80, no. 15, pp. 5768–5775, 2008.
[112]
Y. J. Zavala, R. Gerads, H. Gürleyük, and J. M. Duxbury, “Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health,” Environmental Science and Technology, vol. 42, no. 10, pp. 3861–3866, 2008.
[113]
L. R. Harris, Studies in the atomic spectrometric determination of selenium, mercury, and rare earth elements [Ph.D. thesis], University of Massachusetts, Amherst, Mass, USA, 2012.
[114]
B. Gammelgaard and O. J?ns, “Comparison of an ultrasonic nebulizer with a cross-flow nebulizer for selenium speciation by ion-chromatography and inductively coupled plasma mass spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 15, no. 5, pp. 499–505, 2000.
[115]
L. L. Yu, T. A. Butler, and G. C. Turk, “Effect of valence state on ICP-OES value assignment of SRM 3103a arsenic spectrometric solution,” Analytical Chemistry, vol. 78, no. 5, pp. 1651–1656, 2006.
[116]
T. Narukawa, K. Chiba, T. Kuroiwa, and K. Inagaki, “Differences in sensitivity between As(iii) and As(v) measured by inductively coupled plasma spectrometry and the factors affecting the incoherent molecular formation (IMF) effect in the plasma,” Journal of Analytical Atomic Spectrometry, vol. 25, no. 11, pp. 1682–1687, 2010.
[117]
R. B. Khouzam, J. Szpunar, M. Holeman, and R. Lobinski, “Trace element speciation in food: state of the art of analytical techniques and methods,” Pure and Applied Chemistry, vol. 84, pp. 169–179, 2012.
[118]
A. A. Ammann, “Arsenic speciation analysis by ion chromatography-a critical review of principles and applications,” American Journal of Analytical Chemistry, vol. 2, pp. 27–45, 2011.
[119]
V. Dufailly, L. No?l, J. M. Frémy, D. Beauchemin, and T. Guérin, “Optimisation by experimental design of an IEC/ICP-MS speciation method for arsenic in seafood following microwave assisted extraction,” Journal of Analytical Atomic Spectrometry, vol. 22, no. 9, pp. 1168–1173, 2007.
[120]
B. K. Mandal, K. T. Suzuki, and K. Anzai, “Impact of arsenic in foodstuffs on the people living in the arsenic-affected areas of West Bengal, India,” Journal of Environmental Science and Health A, vol. 42, no. 12, pp. 1741–1752, 2007.
[121]
T. Narukawa and K. Chiba, “Heat-assisted aqueous extraction of rice flour for arsenic speciation analysis,” Journal of Agricultural and Food Chemistry, vol. 58, no. 14, pp. 8183–8188, 2010.
[122]
C. G. Yuan, G. B. Jiang, and B. He, “Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L., and analysis by HPLC-HG-AFS,” Journal of Analytical Atomic Spectrometry, vol. 20, no. 2, pp. 103–110, 2005.
[123]
G.-X. Sun, T. Van de Wiele, P. Alava, F. Tack, and G. Du Laing, “Arsenic in cooked rice: effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract,” Environmental Pollution, vol. 162, pp. 241–246, 2012.
[124]
J. M. Laparra, D. Vélez, R. Barberá, R. Farré, and R. Montoro, “Bioavailability of inorganic arsenic in cooked rice: practical aspects for human health risk assessments,” Journal of Agricultural and Food Chemistry, vol. 53, no. 22, pp. 8829–8833, 2005.
[125]
A. A. Meharg and F.-J. Zhao, “Arsenic in rice grain,” in Arsenic & Rice, p. 41, Springer, Dordrecht, Germany, 2012.
[126]
A.-M. Carey, E. Lombi, E. Donner, et al., “A review of recent developments in the speciation and location of arsenic and selenium in rice grain,” Analytical and Bioanalytical Chemistry, vol. 402, pp. 3275–3286, 2012.
[127]
A.-M. Carey, E. Lombi, E. Donner, et al., “Erratum to: a review of recent developments in the speciation and location of arsenic and selenium in rice grain,” Analytical and Bioanalytical Chemistry, vol. 402, no. 10, p. 3379, 2012.
[128]
J. H. Huang, G. Ilgen, and P. Fecher, “Quantitative chemical extraction for arsenic speciation in rice grains,” Journal of Analytical Atomic Spectrometry, vol. 25, no. 6, pp. 800–802, 2010.
[129]
G. Turk, Personal Communication, Inorganic Chemical Metrology, Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Md, USA, 2012.
[130]
E. H. Larsen, “Method optimization and quality assurance in speciation analysis using high performance liquid chromatography with detection by inductively coupled plasma mass spectrometry,” Spectrochimica Acta B, vol. 53, no. 2, pp. 253–265, 1998.
[131]
A. Solà-Vázquez, J. M. Costa-Fernández, R. Pereiro, and A. Sanz-Medel, “Plasma-based mass spectrometry for simultaneous acquisition of elemental and molecular information,” Analyst, vol. 136, no. 2, pp. 246–256, 2011.
[132]
K. O. Amayo, A. Petursdottir, C. Newcombe et al., “Identification and quantification of arsenolipids using reversed-phase HPLC coupled simultaneously to high-resolution ICPMS and high-resolution electrospray MS without species-specific standards,” Analytical Chemistry, vol. 83, no. 9, pp. 3589–3595, 2011.
[133]
D. A. Rogers, S. J. Ray, and G. M. Hieftje, “An electrospray/inductively coupled plasma dual-source time-of-flight mass spectrometer for rapid metallomic and speciation analysis: part 1. Molecular channel characterization,” Metallomics, vol. 2, no. 4, pp. 271–279, 2010.
[134]
D. A. Rogers, S. J. Ray, and G. M. Hieftje, “An electrospray/inductively coupled plasma dual-source time-of-flight mass spectrometer for rapid metallomic and speciation analysis: part 2. Atomic channel and dual-channel characterization,” Metallomics, vol. 2, no. 4, pp. 280–288, 2010.