全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Methods for the Evaluation of Polyphenolic Content in “Uva Di Troia Canosina” Grape and Seeds at the Different Maceration Stages

DOI: 10.1155/2013/548296

Full-Text   Cite this paper   Add to My Lib

Abstract:

Seeds and skins derived from the small berries of “uva di Troia canosina” grape, a Vitis vinifera variety autochthonous of Apulia region (South Italy), collected at four different stages (“Tesi” 1–4) of the fermentation process were extracted by means of a maceration. The extracts were purified and analyzed, in order to study the influence of fermentation over grape seed and skin polyphenolic content. Seed extraction was performed by a multistep maceration with two solvents: ethanol and acetone, the former giving the best results; moreover, the extracts were purified with pure ethyl acetate in order to enrich their polyphenolic content. On the other hand, skin extraction was achieved by a single-step maceration in methanol and a purification with a brominated synthetic adsorbent resin. The evaluation of the extraction yield and polyphenolic content was carried out by TLC, UV/VIS, and LC/DAD analyses. In the seed extracts, the characteristic polyphenols (catechin, epicatechin, and procyanidin B1 and B2) useful for the development of a nutraceutical product, endowed with antioxidant properties, were present, while no resveratrol was detected in “uva di Troia canosina” grape skin extracts, even in an LC/MS-MS analysis. 1. Introduction “Uva di Troia” is an autochthonous Vitis Vinifera grape variety native of Apulia, a region of southern Italy, and it can be classified into two main biotypes in relation to its berry size. The small berry biotype is called “uva di Troia canosina” because it takes its origins and is still cultivated in the area around the city of Canosa. Previous studies evidenced a high polyphenolic content in this grape variety and a great wine aging potential [1]. On the other hand, the cultivation of this grape biotype is going to be replaced by other varieties with a big berry because it is considered unproductive from the oenological point of view. Phenolic compounds, including stilbenes (e.g., trans-Resveratrol), hydroxybenzoic and hydroxycinnamic acids, flavonols, flavan-3-ols (monomeric catechins, proanthocyanidins), and anthocyanidins, constitute a very important class of secondary metabolites ubiquitous in the plant kingdom, where they are synthesized to accomplish diverse biological and biochemical activities [2] and are responsible for many organoleptic characteristics of wine and grape. Their concentration and composition in grapes depends on the cultivar and so it is influenced by viticultural and environmental factors, such as climate conditions, maturity stage, and production area [3–6]. Polyphenols exhibit beneficial effects

References

[1]  S. Suriano, L. Tarricone, M. Savino, and M. R. Rossi, “Caratterizzazione fenolica di Uve di Aglianico e Uva di Troia coltivate nel nord barese,” L'enologo, vol. 41, no. 12, pp. 71–80, 2005.
[2]  I. Nicoletti, C. Bello, A. de Rossi, and D. Corradini, “Identification and quantification of phenolic compounds in grapes by HPLC-PDA-ESI-MS on a semimicro separation scale,” Journal of Agricultural and Food Chemistry, vol. 56, no. 19, pp. 8801–8808, 2008.
[3]  S. Mu?oz, M. Mestres, O. Busto, and J. Guasch, “Determination of some flavan-3-ols and anthocyanins in red grape seed and skin extracts by HPLC-DAD: validation study and response comparison of different standards,” Analytica Chimica Acta, vol. 628, no. 1, pp. 104–110, 2008.
[4]  C. Cavaliere, P. Foglia, R. Gubbiotti, P. Sacchetti, R. Samperi, and A. Laganà, “Rapid-resolution liquid chromatography/mass spectrometry for determination and quantitation of polyphenols in grape berries,” Rapid Communications in Mass Spectrometry, vol. 22, no. 20, pp. 3089–3099, 2008.
[5]  C. Mané, J. M. Souquet, D. Ollé et al., “Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of champagne grape varieties,” Journal of Agricultural and Food Chemistry, vol. 55, no. 18, pp. 7224–7233, 2007.
[6]  S. Gómez-Alonso, E. García-Romero, and I. Hermosín-Gutiérrez, “HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence,” Journal of Food Composition and Analysis, vol. 20, pp. 618–626, 2007.
[7]  R. Maffei Facino, M. Carini, G. Aldini, E. Bombardelli, P. Morazzoni, and R. Morelli, “Free radicals scavenging action and anti-enzyme activities of procyanidines from Vitis vinifera. A mechanism for their capillary protective action,” Drug Research, vol. 44, no. 5, pp. 592–601, 1994.
[8]  M. Carini, R. Stefani, G. Aldini, M. Ozioli, and R. M. Facino, “Procyanidins from Vitis vinifera seeds inhibit the respiratory burst of activated human neutrophils and lysosomal enzyme release,” Planta Medica, vol. 67, no. 8, pp. 714–717, 2001.
[9]  G. Aldini, M. Carini, A. Piccoli, G. Rossoni, and R. M. Facino, “Procyanidins from grape seeds protect endothelial cells from peroxynitrite damage and enhance endothelium-dependent relaxation in human artery: new evidences for cardio-protection,” Life Sciences, vol. 73, no. 22, pp. 2883–2898, 2003.
[10]  A. L. Waterhouse, “Wine phenolics,” Annals of the New York Academy of Sciences, vol. 957, pp. 21–36, 2002.
[11]  E. Karvela, D. P. Makris, N. Kalogeropoulos, and V. T. Karathanos, “Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols,” Talanta, vol. 79, no. 5, pp. 1311–1321, 2009.
[12]  B. Lorrain, I. Ky, L. Pechamat, and P. L. Teissedre, “Evolution of analysis of polyphenols from grapes, wines, and extracts,” Molecules, vol. 18, pp. 1076–1100, 2013.
[13]  Z. Y. Ju and L. R. Howard, “Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin,” Journal of Agricultural and Food Chemistry, vol. 51, no. 18, pp. 5207–5213, 2003.
[14]  R. Flamini, “Mass spectrometry in grape and wine chemistry. Part I: polyphenols,” Mass Spectrometry Reviews, vol. 22, no. 4, pp. 218–250, 2003.
[15]  Z. Liang, M. Sang, P. Fan et al., “CIELAB coordinates in response to berry skin anthocyanins and their composition in vitis,” Journal of Food Science, vol. 76, no. 3, pp. C490–C497, 2011.
[16]  B. Sun, A. C. Neves, T. A. Fernandes et al., “Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity,” Journal of Agricultural and Food Chemistry, vol. 59, no. 12, pp. 6550–6557, 2011.
[17]  A. Buci?-Koji?, M. Planini?, S. Tomas, M. Bili?, and D. Veli?, “Study of solid-liquid extraction kinetics of total polyphenols from grape seeds,” Journal of Food Engineering, vol. 81, pp. 236–242, 2007.
[18]  Y. Yang and M. Chien, “Characterization of grape procyanidins using high-performance liquid chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 48, no. 9, pp. 3990–3996, 2000.
[19]  S. A. Schou, “Uber die lichtabsorption einiger anthocyanidine,” Helvetica Chimica Acta, vol. 10, pp. 907–915, 1927.
[20]  B. Gabetta, N. Fuzzati, A. Griffini et al., “Characterization of proanthocyanidins from grape seeds,” Fitoterapia, vol. 71, no. 2, pp. 162–175, 2000.
[21]  M. Manfra, M. de Nisco, A. Bolognese et al., “Anthocyanin composition and extractability in berry skin and wine of Vitis vinifera L. cv. Aglianico,” Journal of the Science of Food and Agriculture, vol. 91, pp. 2749–2755, 2011.
[22]  P. Kneknopoulos, G. K. Skouroumounis, Y. Hayasaka, and D. K. Taylor, “New phenolic grape skin products from Vitis vinifera cv. Pinot noir,” Journal of Agricultural and Food Chemistry, vol. 59, no. 3, pp. 1005–1011, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133