全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Use of Two Sulfonphthalein Dyes for the Sensitive and Selective Extraction-Free Spectrophotometric Assay of Albendazole in Bulk Drug and in Tablets

DOI: 10.1155/2013/734027

Full-Text   Cite this paper   Add to My Lib

Abstract:

Albendazole (ALB) is a potent benzimidazole anthelmintic used in the treatment of human intestinal helmintiasis as well as of hytatid cysts and neurocysticercosis. Two rapid, simple, sensitive, and selective spectrophotometric methods are presented for the determination of ALB in pharmaceuticals. The methods are based on the formation of dichloromethane soluble 1?:?1 ion-pair complexes (ALB?:?dye) formed between ALB and sulfonphthalein dyes, bromophenol blue BPB, (method A) and bromothymol blue BTB, (method B). The complexes formed were measured directly (without extraction) at 445?nm (method A) and 460?nm (method B). The experimental conditions were optimized and the systems obey Beer’s law for 1.5–21.0 and 2.0–32.0?μg?mL?1 ALB for method A and method B respectively. The molar absorptivity and Sandell's sensitivity were calculated to be ?L?mol?1?cm?1 and 0.0209?ng?cm?2, and ?L?mol?1?cm?1 and 0.0350?ng?cm?2 using BPB and BTB, respectively. The limits of detection and quantification were calculated to be 0.01 and 0.03, and 0.16, and 0.49?μg mL?1 using BPB and BTB, respectively. The relative standard values for intra-day and inter-day precision were less than 3%, and the accuracy was better than 3% for both methods. 1. Introduction Albendazole (ALB), chemically known as methyl-5-(propyl thio)-2-yl benzimidazole methyl carbamate [1], is widely used as an anthelmintic having a wide spectrum of activity [2]. The drug is official in British Pharmacopoeia [3], which describes a potentiometric titration with perchloric acid in formic acid-acetic acid medium. Quantitative determination of ALB in dosage forms has received wide attention and several methods have been reported and include titrimetry in nonaqueous medium [4, 5], redox titrimetry [6–12], UV spectrophotometry [13–17], spectrofluorimetry [18, 19], voltammetry [20–22], high performance liquid chromatography [23–27], and high performance thin layer chromatography [28, 29]. Several visible spectrophotometric methods, both direct and indirect, are found in the literature for the determination of ALB in pharmaceuticals. Basavaiah et al. [30] in their methods treated ALB with a known excess of NBS in HCl medium, and the unreacted oxidant was reduced by iron(II) and the resulting iron(III) was complexed with thiocyanate or tiron offering two sensitive methods. Two more indirect methods [31] involving NBS-metol-sulfanilamide and NBS-celesteine blue as chromogenic systems have been proposed by Sastry et al. Several other reaction schemes involving chloramine-T-methyl orange or indigocarmine [6],

References

[1]  The Extra Pharmacopoeia, Royal Pharmaceutical Society of Great Britan, London, UK, 24th edition, 1989.
[2]  L. Goodman and A. Gilman, The Pharmaceutical Basis of Therapeutics, Chapter 44, McMilan Publishing Company, New York, NY, USA, 7th edition, 1985.
[3]  British Pharmacopoeia, The Stationary Office, London, UK, 2009.
[4]  K. Basavaiah, P. Nagegowda, and V. Ramakrishna, “Titrimetric and spectrophotometric methods for the assay of albendazole in non-aqueous medium,” Proceedings of the National Academy of Sciences, India, vol. 74, no. 3, pp. 271–276, 2004.
[5]  N. De Laurentis, M. A. Milillo, and S. Bruno, “Determination of albendazole as raw material and in tablets by nonaqueous titration with sodium methylate solution,” Revista de Farmacia e Bioquimica da Universidade de Sao Paulo, vol. 33, no. 1, pp. 23–27, 1997.
[6]  K. Basavaiah and H. C. Prameela, “Use of an oxidation reaction for the quantitative determination of albendazole with chloramine-T and acid dyes,” Analytical Sciences, vol. 19, no. 5, pp. 779–784, 2003.
[7]  K. Basavaiah and H. C. Prameela, “Two simple methods for the estimation of albendazole and its dosage forms using chloramine-T,” Farmaco, vol. 58, no. 7, pp. 527–534, 2003.
[8]  K. Basavaiah and H. C. Prameela, “Kinetic and titrimetric determination of albendazole using bromate and methyl orange,” Indian Journal of Pharmaceutical Sciences, vol. 67, no. 1, pp. 57–60, 2005.
[9]  K. Basavaiah and H. C. Prameela, “Titrimetric and spectrophotometric determination of albendazole with bromate and methyl orange,” Oxidation Communications, vol. 27, no. 1, pp. 177–185, 2004.
[10]  K. Basavaiah, V. Ramakrishna, and B. C. Somashekar, “Assay of albendazole using N-bromosuccinimide,” The Indian Pharmacist, vol. 5, no. 53, pp. 129–136, 2006.
[11]  K. Basavaiah and P. Nagegowda, “Three new methods for the assay of albendazole using N-chlorosuccinimide,” Journal of Scientific and Industrial Research, vol. 63, no. 10, pp. 835–841, 2004.
[12]  K. Basavaiah, V. Ramakrishna, B. C. Somashekar, and U. R. Anilkumar, “Sensitive titrimetric and spectrophotometric methods for the assay of albendazole in pharmaceuticals using sodium periodate,” Analytical Chemistry Indian Journal (TSI), vol. 2, no. 5, pp. 159–166, 2006.
[13]  A. C. Tella, O. M. Olabemiwo, M. O. Salawu, and G. K. Obiyenwa, “Developing a spectrophotometric method for the estimation of Albendazole in solid and suspension forms,” International Journal of Physical Sciences, vol. 5, no. 4, pp. 379–382, 2010.
[14]  S. C. Mandal, M. Bhattacharyya, A. K. Maity, B. K. Gupta, and S. K. Ghosal, “Determination of albendazole in tablet formulations by U.V. spectrophotometric method,” Indian Drugs, vol. 29, no. 7, pp. 323–324, 1992.
[15]  M. M. Fregonezi-Nery, M. M. Baracat, é. R. M. Kedor-Hackmann, and R. M. Pinheiro, “Determination of albendazole in oral suspension,” Analytical Letters, vol. 34, no. 8, pp. 1255–1263, 2001.
[16]  O. Amit, M. Kondawar, P. Shital, S. Nazarkar, N. Manohar, and H. Narkhede, “Validated UV-spectrophotometric method for the estimation of albendazole in tablet dosage form,” Journal of Pharmacy Research, vol. 3, no. 6, pp. 1355–1357, 2010.
[17]  C. Soto, D. Contreras, S. Orellana, J. Ya?ez, and M. I. Toral, “Simultaneous determination of albendazole and praziquantel by second derivative spectrophotometry and multivariated calibration methods in veterinary pharmaceutical formulation,” Analytical Sciences, vol. 26, no. 8, pp. 891–896, 2010.
[18]  S. Kü?ükkolba?i, B. Gündüz, and E. Kili?, “Development of a spectrofluorimetric method for determination of albendazole in tablets,” Analytical Letters, vol. 41, no. 1, pp. 104–118, 2008.
[19]  G. Y. Zhao, H. Wu, S. L. Dong, and L. M. Du, “Study on the inclusion interaction of methylated-β-cyclodextrins with albendazole by spectrofluorimetry and its application,” Chinese Chemical Letters, vol. 19, no. 8, pp. 951–954, 2008.
[20]  A. A. Zuhri, A. I. Hussein, M. J. Musmar, and S. Yaish, “Adsorptive stripping voltammetric determination of albendazole at a hanging mercury drop electrode,” Analytical Letters, vol. 32, no. 15, pp. 2965–2975, 1999.
[21]  A. L. Santos, R. M. Takeuchi, M. P. Mariotti, M. F. De Oliveira, M. V. B. Zanoni, and N. R. Stradiotto, “Study of electrochemical oxidation and determination of albendazole using a glassy carbon-rotating disk electrode,” Farmaco, vol. 60, no. 8, pp. 671–674, 2005.
[22]  M. F. De Oliveira and N. R. Stradiotto, “Voltammetric assay of albendazole in pharmaceutical dosage forms,” Analytical Letters, vol. 34, no. 3, pp. 377–387, 2001.
[23]  R. T. Sane, R. S. Samant, M. D. Joshi et al., “HPLC determination of albendazole in pharmaceuticals,” Indian Drugs, vol. 26, no. 9, pp. 494–496, 1989.
[24]  B. Liawruangrath and S. Liawrungrath, “HPLC method for the determination of albendazole,” ACGC Chemical Research Communications, vol. 8, pp. 45–50, 1998.
[25]  Y. S. R. Krishnaiah, K. Latha, R. S. Karthikeyan, and V. Satyanarayana, “HPLC method for the estimation of albendazole in pharmaceutical dosage forms,” Acta Ciencia Indica, vol. 27, no. 4, p. 161, 2002.
[26]  Z. Atko?ar and G. Altiokka, “The determination of albendazole by flow injection analysis method using UV-detection and HPLC method in suspensions,” Journal of Liquid Chromatography and Related Technologies, vol. 29, no. 6, pp. 849–856, 2006.
[27]  A. Waldia, S. Gupta, R. Issarani, and B. P. Nagori, “Validated liquid chromatographic method for simultaneous estimation of albendazole and ivermectin in tablet dosage form,” Indian Journal of Chemical Technology, vol. 15, no. 6, pp. 617–620, 2008.
[28]  S. J. Varghese, P. Vasanthi, and T. K. Ravi, “Simultaneous densitometric determination of ivermectin and albendazole by high-performance thin-layer chromatography,” Journal of Planar Chromatography, vol. 24, no. 4, pp. 344–347, 2011.
[29]  O. I. Abd El-Sattar, N. M. El-Abasawy, S. A. Abdel-Razeq, M. M. Ismail, K. A. Attia, and N. S. Rashed, “Stability indicating method for determination of albendazole and fenbendazole in the presence of their degradates,” Egyptian Journal of Biomedical Sciences, vol. 18, pp. 105–109, 2005.
[30]  K. Basavaiah, K. Tharpa, R. Prasad, S. G. Hiriyanna, and K. B. Vinay, “Simple, sensitive and rapid spectrophotometric determination of albendazole based on redox and complex formation using n-bromosuccinimide,” Proceedings of the Indian National Science Academy, vol. 75, no. 1, pp. 1–6, 2009.
[31]  C. S. P. Sastry, V. A. N. Sarma, U. V. Prasad, and C. S. R. Lakshmi, “N-bromosuccinimide as an analytical reagent for the spectrophotometric determination of benzimidazole anthelmintics,” Indian Journal of Pharmaceutical Sciences, vol. 59, no. 4, pp. 161–164, 1997.
[32]  S. S. Zarapkar and P. M. Deshpande, “Colorimetric determination of albendazole and its dosage forms,” Indian Journal of Pharmaceutical Sciences, vol. 50, no. 5, pp. 296–297, 1988.
[33]  G. Zhao, H. Li, Y. Liu, and Y. Wang, “Application of charge-transfer reaction between albendazole and chloranilic acid,” Fenxi Huaxue, vol. 29, no. 4, pp. 389–400, 2001.
[34]  M. S. Refat, G. G. Mohamed, and A. Fathi, “Spectrophotometric determination of albendazole drug in tablets: spectroscopic characterization of the charge-transfer solid complexes,” Chinese Journal of Chemistry, vol. 29, no. 2, pp. 324–332, 2011.
[35]  R. T. Sane, D. P. Gangal, R. V. Tendolkar, K. D. Ladage, and R. M. Kothurkar, “An extractive colorimetric method for the determination of albendazole from pharmaceutical preparations,” Indian drugs, vol. 26, no. 11, pp. 632–635, 1989.
[36]  M. S. Kamel, B. N. Barsoum, and R. Sayed, “Spectrophotometric microdetermination of anthelmintic drug in pure form and pharmaceutical formulation by ion-pair complexation,” Journal of Applied Sciences Research, vol. 4, no. 10, pp. 1242–1248, 2008.
[37]  C. S. P. Sastry, A. N. Sarma Varahabhatla, U. V. Prasad, and C. S. R. Lakshmi, “A note on the estimation of some benzimidazole anthelmintics in pharmaceutical preparations by ion-pair extraction method,” Indian Drugs, vol. 34, no. 2, pp. 102–104, 1997.
[38]  H. Abdine, F. Belal, and N. Zoman, “Simple spectrophotometric determination of cinnarizine in its dosage forms,” Farmaco, vol. 57, no. 4, pp. 267–271, 2002.
[39]  S. M. Al-Ghannam, “A simple spectrophotometric method for the determination of β-blockers in dosage forms,” Journal of Pharmaceutical and Biomedical Analysis, vol. 40, no. 1, pp. 151–156, 2006.
[40]  D. H. Manjunatha, S. M. T. Shaikh, K. Harikrishna, R. Sudhirkumar, P. B. Kandagal, and J. Seetharamappa, “Simple and sensitive spectrophotometric methods for the determination of acebutolol hydrochloride in bulk sample and pharmaceutical preparations,” Ecletica Quimica, vol. 33, no. 2, pp. 37–40, 2008.
[41]  K. Kovács-Hadady and I. Fábián, “The determination of benzalkonium chloride in eye-drops by difference spectrophotometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 16, no. 5, pp. 733–740, 1998.
[42]  N. Rajendraprasad, K. Basavaiah, and K. B. Vinay, “Sensitive and selective extraction-free spectrophotometric determination of Quetiapine fumarate in pharmaceuticals using the two sulphonphthalein dyes,” Journal of Preclinical and Clinical Research, vol. 4, no. 1, pp. 24–31, 2010.
[43]  P. J. Ramesh, K. Basavaiah, O. Zenita Devi, and K. B. Vinay, “Simple and sensitive spectrophotometric assay of ofloxacin in pharmaceuticals based on ion-pair reaction,” Chemical Industry and Chemical Engineering Quarterly, vol. 16, no. 4, pp. 353–362, 2010.
[44]  M. M. El-Kerdawy, M. A. Moustafa, S. M. El-Ashry, and D. R. El-Waseef, “Spectrophotometric determination of certain phenothiazines and their dosage forms using bromophenol blue,” Analytical Letters, vol. 26, no. 8, pp. 1669–1680, 1993.
[45]  H. H. Abdine, “Spectrophotometric determination of cisapride using some sulfonphthalein dyes,” Alex Journal of Pharmacy Science, vol. 14, pp. 75–78, 2000.
[46]  A. S. Douglas and M. W. Donald, Principels of Instrumental Analysis Holt, Rinhart and Winston, New York, NY, USA, 1971.
[47]  N. Erk, “Extractive spectrophotometric methods for the novel antidepressant drug in bulk and pharmaceutical dosage forms by using bromthymol blue and bromcresol green,” Analytical Letters, vol. 36, no. 6, pp. 1183–1196, 2003.
[48]  H. Zavis, D. Ludvik, K. Milan, S. Ladislaw, and V. Frantisck, Handbook of Organic Reagents in Inorganic Analysis, University of Aberdem, Ellis Horwood Limited, Chichester, UK, John Wiley & Sons, New York, NY, USA, 1976, Translated by Stanislav, K., Dr. Chalmers The Series and Translation Editor.
[49]  International Conference on Hormonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1), Complementary Guideline on Methodology dated 06 November 1996, incorporated in November 2005, London, UK.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133