全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Determination of 25 Trace Element Concentrations in Biological Reference Materials by ICP-MS following Different Microwave-Assisted Acid Digestion Methods Based on Scaling Masses of Digested Samples

DOI: 10.1155/2013/851713

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of normalized procedures designed for soil and sediment samples (like US-EPA 3051) to chemically prepare some kind of organic samples is a common practice in some laboratories. However, the performance of this method for other matrices has to be demonstrated. Three microwave-assisted digestion procedures with 0.5?g of sample and simplified reagents (10?mL HNO3 alone and mixtures of HNO3/HCl- and HNO3/H2O2 procedures A, B, and C, resp.) were compared for quantitative determination of 25 elements (Be, B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Tl, Pb, Th and U) in three biological reference materials provided by NIST (mussel tissue (MT), tomato leaves (TL), and milk powder (MP)) by ICP-MS. From scaling masses (from 0.1 up to 0.9?g at 0.1?g interval) in procedure A, a linear relationship among instrumental signal and mass of digested sample could be constructed at 99% CL for most of the target analytes. The slope of this linear fit provided the estimation of sample concentration, while the ordinate in origin allowed the identification of matrix interferences which were absent in the reagent blank. 1. Introduction Inductively coupled plasma mass spectrometry (ICP-MS) is a robust and widely used technique for multielemental and isotopic analysis of environmental materials [1–3] that has shown clear advantages when compared with other analytical techniques such as inductively coupled plasma atomic emission spectrometry (ICP-AES) [4–6], flame atomic absorption spectrometry (F-AAS), and electrothermal atomic absorption spectrometry (ET-AAS) [7, 8]. The basic setup for ICP-MS analysis requires the sample introduction as a liquid solution and thus, for solid matrices, an acid digestion procedure becomes mandatory. Sample digestion is mainly carried out by a fusion or a wet procedure based on an acid digestion with a heated mixture of mineral acids [2, 9–13]. In general, closed digestion systems are to be preferred to minimize possible contamination of the digest, increase reproducibility, and avoid losses of volatile elements [14–17]. Wet microwave digestion equipped with temperature and pressure control assisted by common mineral acids, such as nitric, sulphuric, perchloric and hydrochloric acids, is frequently used for sample digestion [18]. In order to dissolve the silicates and eliminate the effects of silica gel in environmental samples, hydrofluoric and orthoboric acids are usually used, although they can produce unsatisfactory recoveries in volatile elements [19, 20]. A mixture of nitric acid and hydrogen peroxide

References

[1]  J. Sucharová and I. Suchara, “Determination of 36 elements in plant reference materials with different Si contents by inductively coupled plasma mass spectrometry: comparison of microwave digestions assisted by three types of digestion mixtures,” Analytica Chimica Acta, vol. 576, no. 2, pp. 163–176, 2006.
[2]  S. Ashoka, B. M. Peake, G. Bremner, K. J. Hageman, and M. R. Reid, “Comparison of digestion methods for ICP-MS determination of trace elements in fish tissues,” Analytica Chimica Acta, vol. 653, no. 2, pp. 191–199, 2009.
[3]  F. C. Bressy, G. B. Brito, I. S. Barbosa, L. S. G. Teixeira, and M. G. A. Korn, “Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MS following microwave-assisted digestion,” Microchemical Journal, vol. 109, pp. 145–149, 2013.
[4]  E. Paredes, M. S. Prats, S. E. Maestre, and J. L. Todolí, “Rapid analytical method for the determination of organic and inorganic species in tomato samples through HPLC-ICP-AES coupling,” Food Chemistry, vol. 111, no. 2, pp. 469–475, 2008.
[5]  W. P. C. dos Santos, V. Hatje, D. D. S. Santil, A. P. Fernandes, M. G. A. Korn, and M. M. de Souza, “Optimization of a centrifugation and ultrasound-assisted procedure for the determination of trace and major elements in marine invertebrates by ICP OES,” Microchemical Journal, vol. 95, no. 2, pp. 169–173, 2010.
[6]  A. Meche, M. C. Martins, B. E. S. N. Lofrano, C. J. Hardaway, M. Merchant, and L. Verdade, “Determination of heavy metals by inductively coupled plasma-optical emission spectrometry in fish from the Piracicaba River in Southern Brazil,” Microchemical Journal, vol. 94, no. 2, pp. 171–174, 2010.
[7]  A. Demirbas, “Oil, micronutrient and heavy metal contents of tomatoes,” Food Chemistry, vol. 118, no. 3, pp. 504–507, 2010.
[8]  L. S. Nunes, J. T. P. Barbosa, A. P. Fernandes et al., “Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation,” Food Chemistry, vol. 127, no. 2, pp. 780–783, 2011.
[9]  M. Hoenig, H. Baeten, S. Vanhentenrijk, E. Vassileva, and P. Quevauviller, “Critical discussion on the need for an efficient mineralization procedure for the analysis of plant material by atomic spectrometric methods,” Analytica Chimica Acta, vol. 358, no. 1, pp. 85–94, 1998.
[10]  M. Canli and G. Atli, “The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species,” Environmental Pollution, vol. 121, no. 1, pp. 129–136, 2003.
[11]  H. Hornung, M. D. Krom, Y. Cohen, and M. Bernhard, “Trace metal content in deep-water sharks from the eastern Mediterranean Sea,” Marine Biology, vol. 115, no. 2, pp. 331–338, 1993.
[12]  A. Giguère, P. G. C. Campbell, L. Hare, D. G. McDonald, and J. B. Rasmussen, “Influence of lake chemistry and fish age on cadmium, copper, and zinc concentrations in various organs of indigenous yellow perch (Perca flavescens),” Canadian Journal of Fisheries and Aquatic Sciences, vol. 61, no. 9, pp. 1702–1716, 2004.
[13]  H. Agemian, D. P. Sturtevant, and K. D. Austen, “Simultaneous acid extraction of six trace metals from fish tissue by hot-block digestion and determination by atomic-absorption spectrometry,” Analyst, vol. 105, no. 1247, pp. 125–130, 1980.
[14]  V. Sandroni and C. M. M. Smith, “Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma-atomic emission spectrometry,” Analytica Chimica Acta, vol. 468, no. 2, pp. 335–344, 2002.
[15]  J. Sastre, A. Sahuquillo, M. Vidal, and G. Rauret, “Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction,” Analytica Chimica Acta, vol. 462, no. 1, pp. 59–72, 2002.
[16]  H. Lachas, R. Richaud, A. A. Herod, D. R. Dugwell, R. Kandiyoti, and K. E. Jarvis, “Determination of 17 trace elements in coal and ash reference materials by ICP-MS applied to milligram sample sizes,” Analyst, vol. 124, no. 2, pp. 177–184, 1999.
[17]  L. García-Rico, R. E. Ramos-Ruiz, and L. Gutiérrez-Coronola, “Total metals in Cultivated oysters from the Northwest coast of Mexico determined by microwave digestion and atomic absorption spectrometry,” The Journal of AOAC International, vol. 84, pp. 1909–1913, 2001.
[18]  K. J. Lamble and S. J. Hill, “Microwave digestion procedures for environmental matrices,” Analyst, vol. 123, no. 7, pp. 103R–133R, 1998.
[19]  J. Ivanova, R. Djingova, S. Korhammer, and B. Markert, “On the microwave digestion of soils and sediments for determination of lanthanides and some toxic and essential elements by inductively coupled plasma source mass spectrometry,” Talanta, vol. 54, no. 4, pp. 567–574, 2001.
[20]  K. E. Jarvis, A. L. Gray, and R. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry, Blackie, London, UK, 1992.
[21]  Z. Mester, M. Angelone, C. Brunori, C. Cremisini, H. Muntau, and R. Morabito, “Digestion methods for analysis of fly ash samples by atomic absorption spectrometry,” Analytica Chimica Acta, vol. 395, no. 1-2, pp. 157–163, 1999.
[22]  B. Xing and P. L. M. Veneman, “Microwave digestion for analysis of metals in soil,” Communications in Soil Science and Plant Analysis, vol. 29, no. 7-8, pp. 923–930, 1998.
[23]  N. N. Meeravali and S. J. Kumar, “Comparison of open microwave digestion and digestion by conventional heating for the determination of Cd, Cr, Cu and Pb in algae using transverse heated electrothermal atomic absorption spectrometry,” Fresenius' Journal of Analytical Chemistry, vol. 366, no. 3, pp. 313–315, 2000.
[24]  H. Polkowska-Motrenko, B. Danko, R. Dybczyński, A. Koster-Ammerlaan, and P. Bode, “Effect of acid digestion method on cobalt determination in plant materials,” Analytica Chimica Acta, vol. 408, no. 1-2, pp. 89–95, 2000.
[25]  US-EPA Method 3051A, “Microwave assisted acid digestion of sediments, sludges, soils and oils,” in Test Methods For Evaluating Solid Waste, US Environmental Protection Agency, Washington, DC, USA, 3rd edition, 2007.
[26]  US-EPA Method 3052, “Microwave assisted acid digestion of siliceous and organically based matrices,” in Test Methods For Evaluating Solid Waste, US Environmental Protection Agency, Washington, DC, USA, 3rd edition, 1995.
[27]  H. M. Kingston and S. J. Haswell, Microwave-Enhanced Chemistry. Fundamentals, Sample Preparation and Applications, American Chemical Society, Washington, DC, USA, 1997.
[28]  N. M. Hassan, P. E. Rasmussen, E. Dabek-Zlotorzynska, V. Celo, and H. Chen, “Analysis of environmental samples using microwave-assisted acid digestion and inductively coupled plasma mass spectrometry: maximizing total element recoveries,” Water, Air, and Soil Pollution, vol. 178, no. 1–4, pp. 323–334, 2007.
[29]  E. J. Llorent-Martínez, P. Ortega-Barrales, M. L. Fernández-de Córdova, A. Domínguez-Vidal, and A. Ruiz-Medina, “Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain,” Food Chemistry, vol. 127, pp. 1257–1262, 2001.
[30]  H. Altundag and M. Tuzen, “Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES,” Food and Chemical Toxicology, vol. 49, no. 11, pp. 2800–2807, 2011.
[31]  C. Yafa and J. G. Farmer, “A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry,” Analytica Chimica Acta, vol. 557, no. 1-2, pp. 296–303, 2006.
[32]  E. Marguí, I. Queralt, M. L. Carvalho, and M. Hidalgo, “Comparison of EDXRF and ICP-OES after microwave digestion for element determination in plant specimens from an abandoned mining area,” Analytica Chimica Acta, vol. 549, no. 1-2, pp. 197–204, 2005.
[33]  NIST. National Institute of Standards and Technology, Certificate of Analysis, Standard Reference Material 1549 Non Fat Milk Powder, 2009.
[34]  NIST. National Institute of Standards and Technology, Certificate of Analysis, Standard Reference Material 2976 Mussel Tissue, 2008.
[35]  NIST. National Institute of Standards and Technology, Certificate of Analysis, Standard Reference Material 1573a Tomato Leaves, 1993.
[36]  J. T. Creed, C. A. Brockhoff, and T. D. Martin, “US-EPA Method 200.8: determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry,” in Environmental Monitoring Systems Laboratory Office of Research and Development, Revision 5.4 EMMC Version, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA, 1994.
[37]  I. B. Brenner and B. Spence, “Determination of metals in environmental samples using the X series ICP-MS,” in Instructions for Operation Based on US-EPA Method 200.8 Version 5.5, Version: 2-2, Thermo Electron Corporation, 2005.
[38]  J. Arunachalam, C. Mohl, P. Ostapczuk, and H. Emons, “Multielement characterization of soil samples with ICP-MS for environmental studies,” Fresenius' Journal of Analytical Chemistry, vol. 352, no. 6, pp. 577–581, 1995.
[39]  M. H. Gonzalez, G. B. Souza, R. V. Oliveira, L. A. Forato, J. A. Nóbrega, and A. R. A. Nogueira, “Microwave-assisted digestion procedures for biological samples with diluted nitric acid: identification of reaction products,” Talanta, vol. 79, no. 2, pp. 396–401, 2009.
[40]  I. Rodushkin, T. Ruth, and ?. Huhtasaari, “Comparison of two digestion methods for elemental determinations in plant material by ICP techniques,” Analytica Chimica Acta, vol. 378, no. 1–3, pp. 191–200, 1999.
[41]  R. Falciani, E. Novaro, M. Marchesini, and M. Gucciardi, “Multi-element analysis of soil and sediment by ICP-MS after a microwave assisted digestion method,” Journal of analytical atomic spectrometry, vol. 15, no. 5, pp. 561–565, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133