Licorice is the most frequently used herb in traditional Chinese medicine (TCM) with versatile functions. It is also a popular natural dietary supplement. While the dosages is very important for there are some side effects caused by licorice. The composition of licorice, its products should be well determined thereof. A simple method for simultaneous determining sixteen compounds in vary high dynamic range of content has been established. This method based on the detection at the characteristic ultraviolet spectra of different types of compounds in licorice. Glycyrrhizin and fifteen flavonoids were well measured. All of these compounds can be precisely quantified at their characteristic wavelengths. This method has been successfully applied to the analyses of different licorices, Sini Tang decoction, and rat plasma after oral administration of Sini Tang decoction. These compounds were found to be over 3000 times in content (from 0.01? g/g to 34.5? g/g) in some samples. 1. Introduction It is well known that herbal prescription is becoming increasingly popular as supplementary and alternative medicine in recent years. The herbal medicines are believed to be multitarget therapies in modern medicine [1–4]. Herbal drugs usually consist of a large number of ingredients [5]. These ingredients might interact with each other during the process of decoction, absorption, metabolism, or at physiological processes [6–9]. Multiconstituent detection is very important to uncover these interactions during the process of the herb application. It is also important to summarize the common behavior of some constituents with similar structure during some bioprocesses, which is a crucial method to unveil the bioactive mechanism of a herbal drug [10]. However, there are two kinds of obstacles that should be succeeded for multiple compounds detection. The first is the large number of compounds in the herb. The second is the high dynamic range of their contents. High resolution and peak capacity are needed to resolve the overlaid signals of these compounds. In order to estimate the different concentrations of them, detector with very long-range linearity and good selectivity of the detector response should be employed. Licorice is an important herb in oriental medicine. It is widely used to treat gastric ulcer, hepatitis C and pulmonary and skin diseases [11–15]. Licorice is also a popular natural dietary supplement [16]. According to a statistic investigation [17] on Chinese herbal prescription, licorice is the most frequently used herb in traditional Chinese medicine (TCM). It
References
[1]
V. Nandakumar, T. Singh, and S. K. Katiyar, “Multi-targeted prevention and therapy of cancer by proanthocyanidins,” Cancer Letters, vol. 269, no. 2, pp. 378–387, 2008.
[2]
A. Goel, S. Jhurani, and B. B. Aggarwal, “Multi-targeted therapy by curcumin: how spicy is it?” Molecular Nutrition and Food Research, vol. 52, no. 9, pp. 1010–1030, 2008.
[3]
H. Wagner and G. Ulrich-Merzenich, “Synergy research: approaching a new generation of phytopharmaceuticals,” Phytomedicine, vol. 16, no. 2-3, pp. 97–110, 2009.
[4]
H. Wagner, “Synergy research: approaching a new generation of phytopharmaceuticals,” Fitoterapia, vol. 82, no. 1, pp. 34–37, 2011.
[5]
C. Xiang, X. Qiao, Q. Wang et al., “From single compounds to herbal extract: a strategy to systematically characterize the metabolites of licorice in rats,” Drug Metabolism and Disposition, vol. 39, no. 9, pp. 1597–1608, 2011.
[6]
Y.-C. Hou, S.-L. Hsiu, H. Ching et al., “Profound difference of metabolic pharmacokinetics between pure glycyrrhizin and glycyrrhizin in licorice decoction,” Life Sciences, vol. 76, no. 10, pp. 1167–1176, 2005.
[7]
G. Cantelli-Forti, M. A. Raggi, F. Bugamelli, F. Maffei, A. Villari, and N. M. Trieff, “Toxicological assessment of liquorice: biliary excretion in rats,” Pharmacological Research, vol. 35, no. 5, pp. 463–470, 1997.
[8]
M. A. Raggi, F. Maffei, F. Bugamelli, and G. Cantelli Forti, “Bioavailability of glycyrrhizin and licorice extract in rat and human plasma as detected by a HPLC method,” Die Pharmazie, vol. 49, no. 4, pp. 269–272, 1994.
[9]
S.-P. Lin, S.-Y. Tsai, Y.-C. Hou, and P.-D. L. Chao, “Glycyrrhizin and licorice significantly affect the pharmacokinetics of methotrexate in rats,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1854–1859, 2009.
[10]
S.-Y. Xiao, H.-X. Liu, W.-H. Lin, and J.-S. Yang, “Diarylheptanoids in rhizoma zingiberis and their stereoslective reactions during the process of decocting,” Chinese Journal of Analytical Chemistry, vol. 35, no. 9, pp. 1295–1300, 2007.
[11]
M. V. Palagina, N. S. Dubnyak, I. N. Dubnyak, and P. S. Zorikov, “Correction of respiratory organ impairment with ural licorice preparations in chronic skin diseases,” Terapevticheskii Arkhiv, vol. 75, no. 1, pp. 63–65, 2003.
[12]
B. Liu, J. Yang, Q. Wen, and Y. Li, “Isoliquiritigenin, a flavonoid from licorice, relaxes guinea-pig tracheal smooth muscle in vitro and in vivo: role of cGMP/PKG pathway,” European Journal of Pharmacology, vol. 587, no. 1–3, pp. 257–266, 2008.
[13]
B. Jayaprakasam, S. Doddaga, R. Wang, D. Holmes, J. Goldfarb, and X.-M. Li, “Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro,” Journal of Agricultural and Food Chemistry, vol. 57, no. 3, pp. 820–825, 2009.
[14]
Y.-C. Xie, X.-W. Dong, X.-M. Wu, X.-F. Yan, and Q.-M. Xie, “Inhibitory effects of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice,” International Immunopharmacology, vol. 9, no. 2, pp. 194–200, 2009.
[15]
A. Agarwal, D. Gupta, G. Yadav, P. Goyal, P. K. Singh, and U. Singh, “An evaluation of the efficacy of licorice gargle for attenuating postoperative sore throat: a prospective, randomized, single-blind study,” Anesthesia and Analgesia, vol. 109, no. 1, pp. 77–81, 2009.
[16]
M. Katayama, T. Fukuda, T. Okamura et al., “Effect of dietary addition of seaweed and licorice on the immune performance of pigs,” Animal Science Journal, vol. 82, no. 2, pp. 274–281, 2011.
[17]
H. Chang, B.-B. Su, Y.-P. Zhou, and D.-R. He, “Assortativity and act degree distribution of some collaboration networks,” Physica A, vol. 383, no. 2, pp. 687–702, 2007.
[18]
M. Schambelan, “Licorice ingestion and blood pressure regulating hormones,” Steroids, vol. 59, no. 2, pp. 127–130, 1994.
[19]
B. R. Walker and C. R. W. Edwards, “Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess,” Endocrinology and Metabolism Clinics of North America, vol. 23, no. 2, pp. 359–377, 1994.
[20]
C. Schulze zur Wiesch, N. Sauer, and J. Aberle, “Hypertension and hypokalemia—a reninoma as the cause of suspected liquorice-induced arterial hypertension,” Deutsche Medizinische Wochenschrift, vol. 136, no. 17, pp. 882–884, 2011.
[21]
H. E. Miettinen, K. Piippo, T. Hannila-Handelberg et al., “Licorice-induced hypertension and common variants of genes regulating renal sodium reabsorption,” Annals of Medicine, vol. 42, no. 6, pp. 465–474, 2010.
[22]
P. Pant, L. Nadimpalli, M. Singh, and J. C. Cheng, “A case of severe hypokalemic paralysis and hypertension. Licorice-induced hypokalemic paralysis,” American Journal of Kidney Diseases, vol. 55, no. 6, pp. A35–A37, 2010.
[23]
A. S. Cooney and J. T. Fitzsimons, “Increased sodium appetite and thirst in rat induced by the ingredients of liquorice, glycyrrhizic acid and glycyrrhetinic acid,” Regulatory Peptides, vol. 66, no. 1-2, pp. 127–133, 1996.
[24]
N. Mumoli and M. Cei, “Licorice-induced hypokalemia,” International Journal of Cardiology, vol. 124, no. 3, pp. e42–e44, 2008.
[25]
C. Noguchi, J. Yang, K. Sakamoto et al., “Inhibitory effects of isoliquiritigenin and licorice extract on voltage-dependent K+ currents in H9c2 cells,” Journal of Pharmacological Sciences, vol. 108, no. 4, pp. 439–445, 2008.
[26]
J. Hukkanen, O. Ukkola, and M. J. Savolainen, “Effects of low-dose liquorice alone or in combination with hydrochlorothiazide on the plasma potassium in healthy volunteers,” Blood Pressure, vol. 18, no. 4, pp. 192–195, 2009.
[27]
G. Chen, L. Zhu, Y. Liu, Q. Zhou, H. Chen, and J. Yang, “Isoliquiritigenin, a flavonoid from licorice, plays a dual role in regulating gastrointestinal motility in vitro and in vivo,” Phytotherapy Research, vol. 23, no. 4, pp. 498–506, 2009.
[28]
Q. Zhang and M. Ye, “Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice),” Journal of Chromatography A, vol. 1216, no. 11, pp. 1954–1969, 2009.
[29]
Y.-C. Wang and Y.-S. Yang, “Simultaneous quantification of flavonoids and triterpenoids in licorice using HPLC,” Journal of Chromatography B, vol. 850, no. 1-2, pp. 392–399, 2007.
[30]
G. Tan, Z. Zhu, H. Zhang et al., “Analysis of phenolic and triterpenoid compounds in licorice and rat plasma by high-performance liquid chromatography diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 24, no. 2, pp. 209–218, 2010.
[31]
L. Li, S. Liang, F. Du, and C. Li, “Simultaneous quantification of multiple licorice flavonoids in rat plasma,” Journal of the American Society for Mass Spectrometry, vol. 18, no. 4, pp. 778–782, 2007.
[32]
“Sini Tang,” in Chinese Pharmacopoeia, Chinese Pharmacopoeia Committee, Ed., p. 650, Chinese Press of Pharmaceutical and Medicinal Science and Technology, Beijing, China, 2010.
[33]
Y. Ozaki, M. Noguchi, H. Kamakura, and M. Harada, “Studies on concentration of glycyrrhizin in plasma and its absorption after oral administration of licorice extract and glycyrrhizin,” Yakugaku Zasshi, vol. 110, no. 1, pp. 77–81, 1990.
[34]
H.-X. Liu, W.-H. Lin, X.-L. Wang, and J.-S. Yang, “Flavonoids from preparation of traditional Chinese medicines named Sini-Tang,” Journal of Asian Natural Products Research, vol. 7, no. 2, pp. 139–143, 2005.
[35]
H.-X. Liu, W.-H. Lin, and J.-S. Yang, “Studies on chemical constituents of sini tang,” China Journal of Chinese Materia Medica, vol. 29, no. 5, pp. 434–436, 2004.
[36]
A. P. Rauter, A. Martins, C. Borges et al., “Liquid chromatography-diode array detection-electrospray ionisation mass spectrometry/nuclear magnetic resonance analyses of the anti-hyperglycemic flavonoid extract of Genista tenera: structure elucidation of a flavonoid-C-glycoside,” Journal of Chromatography A, vol. 1089, no. 1-2, pp. 59–64, 2005.
[37]
P. Waridel, J.-L. Wolfender, K. Ndjoko, K. R. Hobby, H. J. Major, and K. Hostettmann, “Evaluation of quadrupole time-of-flight tandem mass spectrometry and ion-trap multiple-stage mass spectrometry for the differentiation of C-glycosidic flavonoid isomers,” Journal of Chromatography A, vol. 926, no. 1, pp. 29–41, 2001.
[38]
M. Jin, Y. Yang, B. Su, and Q. Ren, “Determination of soyasaponins Ba and Bb in human serum by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry,” Journal of Chromatography B, vol. 846, no. 1-2, pp. 169–175, 2007.
[39]
S. Tsukamoto, M. Aburatani, T. Yoshida, Y. Yamashita, A. A. El-Beih, and T. Ohta, “CYP3A4 inhibitors isolated from licorice,” Biological and Pharmaceutical Bulletin, vol. 28, no. 10, pp. 2000–2002, 2005.