The objective of the current study was the development of a simple, rapid, and accurate isocratic reverse-phase ultra-performance liquid chromatographic (RP-UPLC) method for the routine control analysis of imipramine hydrochloride (IMH) in bulk drug and in pharmaceutical formulations. This work was carried out in order to reduce analysis time and maintaining good efficiency which in turn is focused on high-speed chromatographic separations. The method was developed using Waters Acquity BEH C18 column (100?mm × 2.1?mm, 1.7?μm) with mobile phase consisting of a mixture of acetonitrile and ammonium acetate buffer of pH-5 (80?:?20, v/v/v). UV detection was performed at 220?nm for eluted compound. An excellent linearity was observed in the concentration range 0.2–3?μg/mL IMH with a regression coefficient ( ) value of 0.9999. The method developed was validated and forced degradation was performed as per ICH guidelines. The limit of detection ( ) was 0.2532?ng/mL and the limit of quantitation ( ) was found to be 0.7672?ng/mL. The drug IMH was subjected to hydrolytic, acidic, basic, thermal, photolytic, and oxidative stress conditions according to ICH regulations. IMH was found to be stable in basic, thermal, and photolytic conditions and degrades in acidic, hydrolytic, and oxidative stress conditions. 1. Introduction Imipramine hydrochloride (IMH) is a tricyclic antidepressant. It is a dibenzazepine derivative and chemically IMH is 3-(10,11-Dihydro-5H-dibenz[b,f]azepin-5-yl) propyldimethylamine hydrochloride (Figure 1). IMH is commonly used to treat the depressive disorders owing to their efficiency in elevating the mood of patients by interfering to the reuptake of norepinephrine or serotonin [1]. The drug is official in European Pharmacopoeia [2]. Figure 1: Structure of imipramine hydrochloride. The literature on the methods for the determination of IMH is vast. Several analytical methods have been reported for the determination of IMH in biological fluids and/or pharmaceutical formulations. These include chromatographic techniques like HPLC [3–9], TLC [10], GC [11–14], LC with direct injection and electrochemical detection [15], adsorptive stripping voltammetry [16], chemometric methods [17], flow-injection extraction spectrophotometry [18], derivative spectrophotometry [19, 20], and visible spectrophotometry [20–24]. Many of the reported methods for the determination of imipramine suffer from one or the other disadvantages like time consuming and require expensive experimental setup [11–14], and chemometric methods are less sensitive [17]. Besides, the
References
[1]
J. G. Hardman, L. E. Limbird, P. B. Molonoff, R. W. R. Ruddon, and A. G. Gilman, Goodman and Gilman's the Pharmacological Basis of therapeutics, McGraw-Hill, New York, NY, USA, 1996.
[2]
European Pharmacopoeia, vol. 5, p. 1792, 2005.
[3]
S. K. Patel and N. J. Patel, “Simultaneous determination of imipramine hydrochloride and chlordiazepoxide in pharmaceutical preparations by spectrophotometric, rp-hplc, and hptlc methods,” Journal of AOAC International, vol. 93, no. 3, pp. 904–910, 2010.
[4]
T. Choudhury, A. Ghosh, J. Deb, and A. Bagchi, “Reverse phase high performance liquid chromatographic method and method validation of imipramine by using single mobile phase,” International Journal of Pharmaceutical Science and Technology, vol. 4, p. 54, 2010.
[5]
T. B. Zeugin, K. Brosen, and U. A. Meyer, “Determination of imipramine and seven of its metabolites in human liver microsomes by a high-performance liquid chromatographic method,” Analytical Biochemistry, vol. 189, no. 1, pp. 99–102, 1990.
[6]
F. Pommier, A. Sioufi, and J. Godbillon, “Simultaneous determination of imipramine and its metabolite desipramine in human plasma by capillary gas chromatography with mass-selective detection,” Journal of Chromatography B, vol. 703, no. 1-2, pp. 147–155, 1997.
[7]
R. F. Suckow and T. B. Cooper, “Simultaneous determination of imipramine, desipramine, and their 2-hydroxy metabolites in plasma by ion-pair reversed-phase high-performance liquid chromatography with amperometric detection,” Journal of Pharmaceutical Sciences, vol. 70, no. 3, pp. 257–261, 1981.
[8]
E. Koyama, Y. Kikuchi, H. Echizen, K. Chiba, and T. Ishizaki, “Simultaneous high-performance liquid chromatography-electrochemical detection determination of imipramine, desipramine, their 2-hydroxylated metabolites, and imipramine N-oxide in human plasma and urine: preliminary application to oxidation pharmacogenetics,” Therapeutic Drug Monitoring, vol. 15, no. 3, pp. 224–235, 1993.
[9]
H. A. Heck, N. W. Flynn, and S. E. Buttrill Jr., “Determination of imipramine in plasma by high pressure liquid chromatography and field ionization mass spectrometry: increased sensitivity in comparison with gas chromatography mass spectrometry,” Biomedical Mass Spectrometry, vol. 5, no. 3, pp. 250–257, 1978.
[10]
N. Sistovaris, E. E. Dagrosa, and A. Keller, “Thin-layer chromatographic determination of imipramine and desipramine in human plasma and urine at single-dose levels,” Journal of Chromatography, vol. 277, pp. 273–281, 1983.
[11]
T. B. Cooper, D. Allen, and G. M. Simpson, “A sensitive GLC method for the determination of imipramine and desmethylimipramine using a nitrogen detector,” Psychopharmacology Communications, vol. 1, no. 4, pp. 445–454, 1975.
[12]
D. Alkalay, J. Volk, and S. Carlsen, “A sensitive method for the simultaneous determination in biological fluids of imipramine and desipra mine or clomipramine and N-desmethylclomipramine by gas chromatography mass spectrometry,” Biomedical Mass Spectrometry, vol. 6, no. 5, pp. 200–204, 1979.
[13]
D. A. Breutzmann and L. D. Bowers, “Reversed-phase liquid chromatography and gas chromatography/mass fragmentography compared for determination of tricyclic antidepressant drugs,” Clinical Chemistry, vol. 27, no. 11, pp. 1907–1911, 1981.
[14]
S. B. Puranik, V. R. Pawar, N. Lalitha, P. N. Sanjay Pai, and G. K. Rao, “Residual solvent analysis in hydrochloride salts of active pharmaceutical ingredients,” Pakistan Journal of Pharmaceutical Sciences, vol. 22, no. 4, pp. 410–414, 2009.
[15]
D. Bose, A. Martinavarro-Domínguez, M. Gil-Agustí et al., “Therapeutic monitoring of imipramine and desipramine by micellar liquid chromatography with direct injection and electrochemical detection,” Biomedical Chromatography, vol. 19, no. 5, pp. 343–349, 2005.
[16]
T. G. Díaz, M. I. Acedo-Valenzuela, N. M. Diez, and A. S. Rodríguez, “Simultaneous differential pulse adsorptive stripping determination of imipramine and its metabolite desipramine by the PLS-1 multivariate method,” Electroanalysis, vol. 23, no. 2, pp. 449–455, 2011.
[17]
C. K. Markopoulou, E. T. Malliou, and J. E. Koundourellis, “Application of two chemometric methods for the determination of imipramine, amitriptyline and perphenazine in content uniformity and drug dissolution studies,” Journal of Pharmaceutical and Biomedical Analysis, vol. 37, no. 2, pp. 249–258, 2005.
[18]
T. P. Ruiz, C. M. Lozano, A. Sanz, and C. Alonso, “Flow-injection extraction-spectrophotometric determination of imipramine in pharmaceuticals with methyl orange,” Talanta, vol. 41, no. 9, pp. 1523–1527, 1994.
[19]
J. M. Garcia Fraga, A. I. Jimenez Abizanda, F. Jimenez Moreno, and J. J. Arias Leon, “Simultaneous determination of imipramine and amitryptiline by derivative spectrophotometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 9, no. 2, pp. 109–115, 1991.
[20]
B. A. El Zeany, A. A. Moustafa, and N. F. Farid, “Determination of imipramine in presence of iminodibenzyl and in pharmaceutical dosage form,” Journal of Pharmaceutical and Biomedical Analysis, vol. 33, no. 4, pp. 775–782, 2003.
[21]
F. A. El-Yazbi, M. A. Korany, and M. Bedair, “A sensitive colorimetric method for the determination of imipramine hydrochloride and desipramine hydrochloride,” Journal of Clinical and Hospital Pharmacy, vol. 10, no. 4, pp. 373–377, 1985.
[22]
B. Starczewska, “Spectrophotometric studies and application of imipramine-eriochrome cyanine R system for determination of imipramine in pharmaceuticals,” Journal of Pharmaceutical and Biomedical Analysis, vol. 23, no. 2-3, pp. 383–386, 2000.
[23]
G. N. Reddy, C. Ramesh, T. V. Narayana, K. V. S. P. Rao, and B. G. Rao, “Development of ion-association methods for spectrophotometric assay of imipramine hydrochloride,” International Journal of Chemical Sciences, vol. 9, no. 2, pp. 457–464, 2011.
[24]
H. D. Revanasiddappa and B. Manju, “Spectrophotometric determination of some antidepressant drugs using 3-methylbenzothiazolin-2-one hydrazone,” European Journal of Pharmaceutical Sciences, vol. 9, no. 2, pp. 221–225, 1999.
[25]
ICH Q1A (R2), “Stability Testing of New Drug Substances and Products, 2003,” ICH Q2, (R1), Validation of Analytical Procedures: Text and Methodology, 2005.
[26]
T. Q. B. ICH, Validation of Analytical Procedures: Methodology (CPMP/ICH/281/95). Step 4. Consensus Guideline, The European Agency for the Evaluation of Medicinal Products, London, UK, 1996.