全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microwave-Assisted Derivatization of Bile Acids for Gas Chromatography/Mass Spectrometry Determination

DOI: 10.1155/2013/805678

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bile acids derived from cholesterol are produced in the liver, and their analysis is difficult due to their complex natures and their low concentrations in biological fluids. Mixtures of various derivatives, created via conventional heating, are used for such analyses. Microwave radiation is proposed to accelerate the derivatization process. This paper presents a mass fragmentation study and microwave-assisted derivatization (MAD) for the silylation of bile acids (cholic and ursodesoxycholic) prior to gas chromatography and mass spectrometry analysis. The derivatization was performed using the two-step process of methoximation and silylation. The reaction time, power, and quantity of N,O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA) + 1% trimethylchlorosilane (TCMS) were optimized to improve the derivatization. The optimized derivatization conditions required 210?W for 3 min. The MAD method exhibited linearity with respect to cholic acid between 0.78 and 20.0?μg mL?1 with an LOQ of 0.23?μg mL?1 and a precision ranging from 1.08% to 9.32% CV. This optimized derivatization method is valid for the analysis of bile acids in different matrices. 1. Introduction Bile acids (BAs) are steroidal compounds synthesized in the liver during cholesterol metabolism, and their major structural components include a steroid nucleus with a side chain and carboxyl groups [1–3]. BAs are predominantly present in biological fluids in their ionized form. The composition of BA in serum and urine varies with different physicochemical properties and the rate of intestinal absorption by the liver [2, 4]. Its hepatic and intestinal metabolism can also be influenced by liver and gastrointestinal diseases. Therefore, modifications to the hepatic synthesis, intracellular metabolism, hepatic uptake, and biliary excretion can result in a disturbance in the metabolism of bile acids [1, 4, 5]. An increase in blood bile salts appears to result from changes in their hepatocellular uptake that are induced by chemical substances and can serve as a biological marker for the detection of liver damage [1, 4–6]. Bile acids are present in serum and urine at millimolar levels, and due to large differences in their chemical properties, such as lipophilicity and polarity, their separation and identification require accurate and sensitive methods. Several analytical methods based on chromatography techniques have been reported for detecting bile acids in biological fluids [1, 7–9]. Liquid chromatography (LC) coupled with evaporative light-scattering detection (ELSD) or conventional UV-Vis detection

References

[1]  I. Burkard, A. von Eckardstein, and K. M. Rentsch, “Differentiated quantification of human bile acids in serum by high-performance liquid chromatography-tandem mass spectrometry,” Journal of Chromatography B, vol. 826, no. 1-2, pp. 147–159, 2005.
[2]  A. Fini, G. Feroci, and A. Roda, “Acidity in bile acid systems,” Polyhedron, vol. 21, no. 14-15, pp. 1421–1427, 2002.
[3]  A. K. Batta and G. Salen, “Gas chromatography of bile acids,” Journal of Chromatography B, vol. 723, no. 1-2, pp. 1–16, 1999.
[4]  A. Roda, F. Piazza, and M. Baraldini, “Separation techniques for bile salts analysis,” Journal of Chromatography B, vol. 717, no. 1-2, pp. 263–278, 1998.
[5]  A.-M. Montet, L. Oliva, F. Beaugé, and J.-C. Montet, “Bile salts modulate chronic ethanol-induced hepatotoxicity,” Alcohol and Alcoholism, vol. 37, no. 1, pp. 25–29, 2002.
[6]  M. J. N. de Paiva and M. E. P. B. de Siqueira, “Increased serum bile acids as a possible biomarker of hepatotoxicity in Brazilian workers exposed to solvents in car repainting shops,” Biomarkers, vol. 10, no. 6, pp. 456–463, 2005.
[7]  T. Iida, S. Ogawa, G. Kakiyama et al., “Capillary gas chromatographic separation of bile acid acyl glycosides without thermal decomposition and isomerization,” Journal of Chromatography A, vol. 1057, no. 1-2, pp. 171–176, 2004.
[8]  T. Iida, S. Tazawa, T. Tamaru, J. Goto, and T. Nambara, “Gas chromatographic separation of bile acid 3-glucosides and 3-glucuronides without prior deconjugation on a stainless-steel capillary column,” Journal of Chromatography A, vol. 689, no. 1, pp. 77–84, 1995.
[9]  F. Mashige, N. Tanaka, A. Maki, S. Kamei, and M. Yamanaka, “Direct spectrophotometry of total bile acids in serum,” Clinical Chemistry, vol. 27, no. 8, pp. 1352–1356, 1981.
[10]  K. A. Kouremenos, J. J. Harynuk, W. L. Winniford, P. D. Morrison, and P. J. Marriott, “One-pot microwave derivatization of target compounds relevant to metabolomics with comprehensive two-dimensional gas chromatography,” Journal of Chromatography B, vol. 878, no. 21, pp. 1761–1770, 2010.
[11]  C. Schummer, O. Delhomme, B. M. R. Appenzeller, R. Wennig, and M. Millet, “Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis,” Talanta, vol. 77, no. 4, pp. 1473–1482, 2009.
[12]  A. Shareef, M. J. Angove, and J. D. Wells, “Optimization of silylation using N-methyl-N-(trimethylsilyl)-trifluoroacetamide, N,O-bis-(trimethylsilyl)-trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estrogens estrone and 17α-ethinylestradiol by gas chromatography-mass spectrometry,” Journal of Chromatography A, vol. 1108, no. 1, pp. 121–128, 2006.
[13]  R. J. Wells, “Recent advances in non-silylation derivatization techniques for gas chromatography,” Journal of Chromatography A, vol. 843, no. 1-2, pp. 1–18, 1999.
[14]  J. Drozd, “Chemical derivatization in gas chromatography,” Journal of Chromatography A, vol. 113, no. 3, pp. 303–356, 1975.
[15]  Y. Alnouti, I. L. Csanaky, and C. D. Klaassen, “Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC-MS/MS,” Journal of Chromatography B, vol. 873, no. 2, pp. 209–217, 2008.
[16]  A. K. Batta, G. Salen, P. Batta, G. S. Tint, D. S. Alberts, and D. L. Earnest, “Simultaneous quantitation of fatty acids, sterols and bile acids in human stool by capillary gas-liquid chromatography,” Journal of Chromatography B, vol. 775, no. 2, pp. 153–161, 2002.
[17]  I. Bobeldijk, M. Hekman, J. de Vries-van der Weij et al., “Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: compound class targeting in a metabolomics workflow,” Journal of Chromatography B, vol. 871, no. 2, pp. 306–313, 2008.
[18]  W. J. Griffiths and J. Sj?vall, “Analytical strategies for characterization of bile acid and oxysterol metabolomes,” Biochemical and Biophysical Research Communications, vol. 396, no. 1, pp. 80–84, 2010.
[19]  J. A. Bowden, D. M. Colosi, D. C. Mora-Montero, T. J. Garrett, and R. A. Yost, “Enhancement of chemical derivatization of steroids by gas chromatography/mass spectrometry (GC/MS),” Journal of Chromatography B, vol. 877, no. 27, pp. 3237–3242, 2009.
[20]  Y.-Q. Zhou, Z.-J. Wang, and N. Jia, “Formation of multiple trimethylsilyl derivatives in the derivatization of 17α-ethinylestradiol with BSTFA or MSTFA followed by gas chromatography-mass spectrometry determination,” Journal of Environmental Sciences, vol. 19, no. 7, pp. 879–884, 2007.
[21]  á. Sebok, K. Sezer, A. Vasanits-Zsigrai, A. Helenkár, G. Záray, and I. Molnár-Perl, “Gas chromatography-mass spectrometry of the trimethylsilyl (oxime) ether/ester derivatives of cholic acids: their presence in the aquatic environment,” Journal of Chromatography A, vol. 1211, no. 1-2, pp. 104–112, 2008.
[22]  W. J. Griffiths and Y. Wang, “Analysis of neurosterols by GC-MS and LC-MS/MS,” Journal of Chromatography B, vol. 877, no. 26, pp. 2778–2805, 2009.
[23]  J. L. Little, “Artifacts in trimethylsilyl derivatization reactions and ways to avoid them,” Journal of Chromatography A, vol. 844, no. 1-2, pp. 1–22, 1999.
[24]  B. S. Kumar, B. C. Chung, Y.-J. Lee, H. J. Yi, B.-H. Lee, and B. H. Jung, “Gas chromatography-mass spectrometry-based simultaneous quantitative analytical method for urinary oxysterols and bile acids in rats,” Analytical Biochemistry, vol. 408, no. 2, pp. 242–252, 2011.
[25]  P. Tyagi, D. R. Edwards, and M. S. Coyne, “Fecal sterol and bile acid biomarkers: Runoff concentrations in animal waste-amended pastures,” Water, Air, and Soil Pollution, vol. 198, no. 1–4, pp. 45–54, 2009.
[26]  M. J. Casas-Catalán, M. T. Doménech-Carbó, R. Mateo-Castro, J. V. Gimeno-Adelantado, and F. Bosch-Reig, “Characterization of bile acids and fatty acids from ox bile in oil paintings by gas chromatography-mass spectrometry,” Journal of Chromatography A, vol. 1025, no. 2, pp. 269–276, 2004.
[27]  A. Ranz, A. Eberl, E. Maier, and E. Lankmayr, “Microwave-assisted derivatization of acidic herbicides for gas chromatography-mass spectrometry,” Journal of Chromatography A, vol. 1192, no. 2, pp. 282–288, 2008.
[28]  M. Damm, G. Rechberger, M. Kollroser, and C. O. Kappe, “Microwave-assisted high-throughput derivatization techniques utilizing silicon carbide microtiter platforms,” Journal of Chromatography A, vol. 1217, no. 1, pp. 167–170, 2010.
[29]  M. Liebeke, A. Wunder, and M. Lalk, “A rapid microwave-assisted derivatization of bacterial metabolome samples for gas chromatography/mass spectrometry analysis,” Analytical Biochemistry, vol. 401, no. 2, pp. 312–314, 2010.
[30]  Y. C. Fiamegos, A. Karatapanis, and C. D. Stalikas, “Microwave-assisted phase-transfer catalysis for the rapid one-pot methylation and gas chromatographic determination of phenolics,” Journal of Chromatography A, vol. 1217, no. 5, pp. 614–621, 2010.
[31]  EURACHEM, Guide to Quality in Analytical Chemistry Na AID to Accreditation, CITAC/EURACHEM, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133