This paper deals the application of laser-induced breakdown spectroscopy (LIBS) to toxic metals used as pigment in crushed ice-ball samples. The present work highlights the advantages of LIBS as in situ, real-time analytical tool for rapid detection of toxic or heavy metals like lead (Pb) and chromium (Cr) and non toxic elements like carbon (C), nitrogen (N), magnesium (Mg), calcium (Ca), sodium (Na), and potassium (K) in crushed ice-ball of different colors (red, green, yellow, pale yellow, and orange) collected from five different areas, with minimal sample preparation. For rapid surveillance of toxic metals we have used multivariate analysis, that is, principal component analysis (PCA) with the LIBS spectral data of ice-ball samples. This study suggests that LIBS coupled with PCA may be an instant diagnostic tool for identification and classification of adulterated and nonadulterated samples. 1. Introduction Many studies have shown that our acceptance of the food is difficult where the color of a food does not meet our expectations and aesthetics quality [1–4]. Thus, colors play very important role in our acceptance of food. Ice balls are prepared from crushed ice topped with sweetened colored syrup and served in the form of a ball in stick. Two types of food colors are frequently used in food and ice bar products: (i) natural or bio colors like carotenoids, flavnoids, anthocyanidins, chlorophyll, betalain, curcumin, and so forth, which are extracted from plants, and (ii) synthetic colors like Sunset Yellow FCF, Tartrazine, Ponceau 4R, Carmoisine, Erythrosine, Brilliant Blue FCF, Fast Green FCF, and Indigocarmine. The maximum permissible level of synthetic food colors that can be added either single or in mix proportion is 100?ppm [5]. Instead of the previous permitted colors, some street vendor’s and small-scale ice-ball makers use low-grade nonpermitted colors like clothes color, copper sulphate, vermilion (mercury sulphide), lead chromate, lead sulphate, and so forth, for gaining undue profits which leads to serious health problems and potential dangers, like cancer, lead poisoning, embryo toxicity, teratogenicity, dermatitis, and eczema from repeated exposures [5–8]. Adulteration is the mixing of inferior quality material or inferior substance to the superior product, which reduces the nature, quality and originality in taste, color, odor, and nutritional value causing ill effects on the health of the consumers. As a result of these malpractices, the ultimate victim is a consumer, who innocently takes adulterated foods, and, leads to serious
References
[1]
U. M. Perez and J. Beltran, “Determination of dyes in foodstuffs by capillary zone electrophoresis,” Journal of Chromatography A, vol. 898, no. 2, pp. 271–275, 2000.
[2]
M. Florian, H. Yamanaka, P. A. Carneiro, and M. V. B. Zanoni, “Determination of brilliant blue FCF in the presence and absence of erythrosine and quinoline yellow food colours by cathodic stripping voltammetry,” Food Additives and Contaminants, vol. 19, no. 9, pp. 803–809, 2002.
[3]
S. Dixit, R. C. Pandey, M. Das, and S. K. Khanna, “Food quality surveillance on colours in eatables sold in rural markets of Uttar Pradesh,” Journal of Food Science and Technology, vol. 32, pp. 373–376, 1995.
[4]
M. B. Jacobs, “Coloring matters in foods,” in The Chemical Analysis of Food and Food Products, pp. 103–149, Robert E. Krieger, New York, NY, USA, 1973.
[5]
Colouring matter, in Prevention of Food Adulteration Act of India-1954, pp. 002–116, Law Publishers, Allahabad, India, 2003.
[6]
S. Babu and I. S. Shenolikar, “Health and nutritional implications of food colours,” Indian Journal of Medical Research, vol. 102, pp. 245–249, 1995.
[7]
G. Biswas, S. Sarkar, and T. K. Chatterjee, “Surveillance on artificial colours in food products in Calcutta and adjoining areas,” Journal of Food Science and Technology, vol. 31, pp. 66–67, 1994.
[8]
S. Kakosy, A. Hudak, and M. Narray, “Lead intoxication epidemic caused by ingestion of contaminated ground paprika,” Journal of Toxicology-Clinical Toxicology, vol. 34, no. 5, pp. 507–511, 1996.
[9]
R. V. Bhat and P. Mathur, “Changing scenario of food colours in India,” Current Science, vol. 74, no. 3, pp. 198–202, 1998.
[10]
R. Agrawal, A. K. Pathak, G. K. Rai, and A. K. Rai, “Classification of milk of different origin using LIBS,” Asian Journal of Spectroscopy, special issue, pp. 141–146, 2010.
[11]
M. Tiwari, R. Agrawal, A. K. Pathak, A. K. Rai, and G. K. Rai, “Laser-induced breakdown spectroscopy: an approach to detect adulteration in turmeric,” Spectroscopy Letters, vol. 46, no. 3, pp. 155–159, 2013.
[12]
A. Miziolek, W. V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy: Fundamentals and Applications, Cambridge University Press, Cambridge, UK, 2006.
[13]
R. Agrawal, R. Kumar, S. Rai, A. K. Pathak, A. K. Rai, and G. K. Rai, “LIBS: a quality control tool for food supplements,” Food Biophysics, vol. 6, no. 4, pp. 527–533, 2011.
[14]
S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Applied Physics B, vol. 98, no. 1, pp. 231–241, 2010.
[15]
A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, “Assessment of LIBS for spectrochemical analysis: a review,” Applied Spectroscopy Reviews, vol. 47, no. 1, pp. 14–40, 2012.
[16]
D. K. Chauhan, D. K. Tripathi, R. Agrawal, and A. K. Rai, “Detection of silicon in wheat (Triticum aestivum) using laser induced breakdown spectroscopy and phytolith analysis,” Journal of Research, SKUAST-J, vol. 10, no. 1, pp. 75–79, 2011.
[17]
S. Pandhija and A. K. Rai, “In situ multielemental monitoring in coral skeleton by CF-LIBS,” Applied Physics B, vol. 94, no. 3, pp. 545–552, 2009.
[18]
S. Pandhija and A. K. Rai, “Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS,” Environmental Monitoring and Assessment, vol. 148, no. 1–4, pp. 437–447, 2009.
[19]
R. Kumar, A. K. Rai, D. Alamelu, and S. K. Aggarwal, “Monitoring of toxic elements present in sludge of industrial waste using CF-LIBS,” Environmental Monitoring and Assessment, vol. 185, no. 1, pp. 171–180, 2013.
[20]
D. Sun, M. Su, C. Dong, D. Zhang, and X. Ma, “A semi-quantitative analysis of essential micronutrient in folium lycii using laser-induced breakdown spectroscopy technique,” Plasma Science and Technology, vol. 12, no. 4, pp. 478–481, 2010.
[21]
National Institute of Standards and Technology, “Electronic database,” http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
[22]
R. E. Russo, X. L. Mao, J. H. Yoo, and J. J. Gonzalez, “Laser ablation,” in Laser Induced Breakdown Spectroscopy, J. P. Singh and S. N. Thakur, Eds., pp. 49–82, Elsevier, Amsterdam, The Netherlands, 2007.
[23]
H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Physical Review, vol. 131, no. 3, pp. 1170–1176, 1963.
[24]
H. R. Griem, Plasma Spectroscopy, McGraw-Hill, New York, NY, USA, 1964.
[25]
S. Eliezer, A. D. Krumbein, and D. Salzmann, “A generalised validity condition for local thermodynamic equilibrium in a laser-produced plasma,” Journal of Physics D, vol. 11, no. 12, pp. 1693–1701, 1978.
[26]
S. N. Thakur, “Atomic emission spectroscopy,” in Laser Induced Breakdown Spectroscopy, J. P. Singh and S. N. Thakur, Eds., pp. 23–48, Elsevier, Amsterdam, The Netherlands, 2007.