Minor Volatile Compounds in White Wines from Canary Islands, Madeira, and Pico (Azores) by Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry: A Qualitative Study
Application of headspace solid-phase microextraction (HS-SPME) coupled with high-resolution gas chromatographic (HRGC) analytical system was studied for detection and identification of volatile compounds in wines. Four different SPME fibers were tested, and 138 different compounds were detected and identified. The best fiber for the determination of different groups of compounds was selected. Using these results, a comparative study of Madeira, Tenerife (Canary Islands), and Pico (Azores) was carried out. 1. Introduction Wine is an alcoholic solution with a high variety of dissolved substances such as sugars, acids, alcohols, phenolic compounds, nitrogen compounds, macromolecular materials, minerals, and a number of volatile organic compounds that have great influence on sensory and variety characteristics of wine. Techniques of determinants isolation are a critical step for the determination of aroma compounds. Technique selected can influence the flavor profile obtained; therefore, the analyst should keep in mind every time the advantages and disadvantages of different methods of isolation of these determinants. Selection of sampling techniques, sample preparation, determinants separation, detection, and quantification, will be essential and crucial for the proper chemical characterization of aroma-related compounds. As aroma compounds are intrinsically volatile substances, most of the compounds should be determined by gas chromatography with the exception for thermolabile substances. In this particular case HPLC or SFC is suitable [1]. SPME technique has a great potential for the analysis of aroma-related compounds. The headspace SPME (HS-SPME) avoids the immersion of fiber in complex samples that can reduce fiber life. Besides, gas diffusion coefficients are lower in a gas matrix than in liquid matrix so equilibria are reached earlier for HS-SPME [2]. This is a useful technique for obtaining fingerprints of food flavors, although the most obvious benefit is the ability to isolate and concentrate volatile compounds without interference from matrix components [1]. HS-SPME shows a much higher sensitivity to volatile aromatic compounds and semivolatile than other conventional headspace techniques [3]. In contrast to the extraction techniques based on the total extraction of determinants from the matrix, SPME is based on a balance in the concentrations of the determinants in the sample in the headspace and the fiber stationary phase [4, 5]. SPME is the suitable technique for volatile compounds in wine. A big number of wine aroma compounds have been
References
[1]
B. Plutowska and W. Wardencki, “Application of gas chromatography-olfactometry (GC-O) in analysis and quality assessment of alcoholic beverages—a review,” Food Chemistry, vol. 107, no. 1, pp. 449–463, 2008.
[2]
X. Yang and T. Peppard, “Solid-phase microextraction for flavor analysis,” Journal of Agricultural and Food Chemistry, vol. 42, no. 9, pp. 1925–1930, 1994.
[3]
M. E. Miller and J. D. Stuart, “Comparison of gas-sampled and SPME-sampled static headspace for the determination of volatile flavor components,” Analytical Chemistry, vol. 71, no. 1, pp. 23–27, 1999.
[4]
T. Hy?tyl?inen and M.-L. Riekkola, “Sorbent- and liquid-phase microextraction techniques and membrane-assisted extraction in combination with gas chromatographic analysis: a review,” Analytica Chimica Acta, vol. 614, no. 1, pp. 27–37, 2008.
[5]
B. Plutowska and W. Wardencki, “Aromagrams—aromatic profiles in the appreciation of food quality,” Food Chemistry, vol. 101, no. 2, pp. 845–872, 2007.
[6]
J. J. Rodríguez-Bencomo, J. E. Conde, M. A. Rodríguez-Delgado, F. García-Montelongo, and J. P. Pérez-Trujillo, “Determination of esters in dry and sweet white wines by headspace solid-phase microextraction and gas chromatography,” Journal of Chromatography A, vol. 963, no. 1-2, pp. 213–223, 2002.
[7]
J. J. Rodríguez-Bencomo, J. E. Conde, F. García-Montelongo, and J. P. Pérez-Trujillo, “Determination of major compounds in sweet wines by headspace solid-phase microextraction and gas chromatography,” Journal of Chromatography A, vol. 991, no. 1, pp. 13–22, 2003.
[8]
M. Mestres, M. P. Martí, O. Busto, and J. Guasch, “Simultaneous analysis of thiols, sulphides and disulphides in wine aroma by headspace solid-phase microextraction-gas chromatography,” Journal of Chromatography A, vol. 849, no. 1, pp. 293–297, 1999.
[9]
M. Mestres, M. P. Martí, O. Busto, and J. Guasch, “Analysis of low-volatility organic sulphur compounds in wines by solid-phase microextraction and gas chromatography,” Journal of Chromatography A, vol. 881, no. 1-2, pp. 583–590, 2000.
[10]
J. S. Camara, M. Arminda Alves, and J. C. Marques, “Development of headspace solid-phase microextraction-gas chromatography-mass spectrometry methodology for analysis of terpenoids in Madeira wines,” Analytica Chimica Acta, vol. 555, no. 2, pp. 191–200, 2006.
[11]
R. Noguerol-Pato, C. González-Barreiro, B. Cancho-Grande, and J. Simal-Gándara, “Quantitative determination and characterisation of the main odourants of Mencía monovarietal red wines,” Food Chemistry, vol. 117, no. 3, pp. 473–484, 2009.
[12]
Z. Zeng, H. Zhang, T. Zhang, S. Tamogami, and J. Y. Chen, “Analysis of flavor volatiles of glutinous rice during cooking by combined gas chromatography-mass spectrometry with modified headspace solid-phase microextraction method,” Journal of Food Composition and Analysis, vol. 22, no. 4, pp. 347–353, 2009.
[13]
P. Alanis, S. Ashkan, C. Krauter, S. Campbell, and A. S. Hasson, “Emissions of volatile fatty acids from feed at dairy facilities,” Atmospheric Environment, vol. 44, no. 39, pp. 5084–5092, 2010.
[14]
M. Bueno, L. Culleré, J. Cacho, and V. Ferreira, “Chemical and sensory characterization of oxidative behavior in different wines,” Food Research International, vol. 43, no. 5, pp. 1423–1428, 2010.
[15]
L. Armada, E. Fernández, and E. Falqué, “Influence of several enzymatic treatments on aromatic composition of white wines,” LWT—Food Science and Technology, vol. 43, no. 10, pp. 1517–1525, 2010.
[16]
S. J. Pérez Olivero and J. P. Pérez Trujillo, “A new method for the determination of carbonyl compounds in wines by headspace solid-phase microextraction coupled to gas chromatography-ion trap mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 58, no. 24, pp. 12976–12985, 2010.
[17]
V. Ferreira, N. Ortín, A. Escudero, R. López, and J. Cacho, “Chemical characterization of the aroma of Grenache rosé wines: aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies,” Journal of Agricultural and Food Chemistry, vol. 50, no. 14, pp. 4048–4054, 2002.
[18]
R. López, N. Ortín, J. P. Pérez-Trujillo, J. Cacho, and V. Ferreira, “Impact odorants of different young white wines from the Canary Islands,” Journal of Agricultural and Food Chemistry, vol. 51, no. 11, pp. 3419–3425, 2003.
[19]
K. B. Shure and T. E. Acree, “Changes in the odor-active compounds in Vitis labruscana cv. Concord during growth and development,” Journal of Agricultural and Food Chemistry, vol. 42, no. 2, pp. 350–353, 1994.
[20]
J. Marais, C. J. van Wyk, and A. Rapp, “Effect of sunlight and shade on norisoprenoid levels in maturing weisser Riesling and Chenin blanc grapes and weisser Riesling wines,” South African Journal for Enology and Viticulture, vol. 13, pp. 23–32, 1992.