全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stability Indicating HPTLC Method for Analysis of Rifaximin in Pharmaceutical Formulations and an Application to Acidic Degradation Kinetic Study

DOI: 10.1155/2013/613218

Full-Text   Cite this paper   Add to My Lib

Abstract:

A specific stability indicating high-performance thin-layer chromatographic method for analysis of rifaximin both as a bulk drug and in formulations was developed and validated. The method employed HPTLC aluminium plates precoated with silica gel 60 F254 as the stationary phase. The optimized mobile phase system consisted of n-hexane?:?2-propanol?:?acetone?:?ammonia (5?:?4.1?:?1, v/v/v/v), which gave compact spots for rifaximin at of 0.59 ± 0.03. Rifaximin was subjected to forced degradation studies in order to check the specificity of the method. Densitometric analysis of rifaximin was carried out in the absorbance reflectance mode at 443?nm. The calibration plots showed linear relationship in the concentration range of 400–3200?ng per band. Moreover, linearity was also confirmed by verification of homoscedasticity of variance. According to validation studies, the developed method was repeatable and specific as revealed by % RSD less than 2 and hence can be used for routine analysis of pharmaceutical formulation. Moreover, the method could effectively separate the drug from its degradation products; hence it can be employed as a stability indicating one. The kinetics of acid degradation process at various temperatures was also investigated and first-order rate constant, half-life, shelf life, and activation energy were computed. 1. Introduction Rifaximin, a benzimidazole derivative, is a structural analogue of rifampicin. Chemically, it is a 2S,16Z,18E,20S,21S,22R,23R,24R,25S,26S,27S,28E-5,6,21,23,25-pentahydroxy-27-methoxy-2,4,11,16,20,22,24,26-octamethyl-2,7-epoxypentadeca-[1,11,13] trienimino) benzofuro [4,5-e] pyrido [1,2 benzimidazole 1,15(2H)-dione,25-acetate (Figure 1) [1]. Figure 1: Chemical structure of rifaximin. Rifaximin is a newer antibiotic, used for the treatment of patients having more than 12 years of age with traveller’s diarrhoea caused by noninvasive strains of Escherichia coli [4]. Rifaximin binds to the beta-subunit of bacterial DNA-dependent RNA polymerase and prevents catalysis of polymerization of deoxyribonucleotides into a DNA strand, thereby inhibiting bacterial RNA synthesis. In vitro studies of rifaximin have demonstrated broad-spectrum coverage including gram-positive, gram-negative, and anaerobic bacteria as well as a limited risk of bacterial resistance [5]. Literature reports various analytical methods like spectrophotometric [6, 7], RP-HPLC [8, 9], and stability indicating HPLC [10] for the determination of rifaximin in pharmaceutical formulations. Moreover, bioanalytical methods, that is, HPLC-TMS [11, 12], LC-ESI-MS

References

[1]  N. J. O. Maryadele, An Encyclopedia of Chemicals, Drug and Biologicals, The Merck Index, Division of Merck and Co. Inc., Merck Research Laboratories, White house Station, NJ, USA, 14th edition, 2006.
[2]  N. R. Rao, R. M. Vali, B. Ramachandra, and P. K. Maurya, “Rapid determination of rifaximin on dried blood spots by LC-ESI-MS,” Biomedical Chromatography, vol. 25, no. 11, pp. 1201–1207, 2011.
[3]  I. C. H. guideline, “Stability testing of new drug substances and products (Q1AR2),” in Proceedings of the International Conference on Harmonization, Food and Drug Administration, Geneva, switzerland, 2003.
[4]  H. L. DuPont, “Therapy for and prevention of traveler's diarrhea,” Clinical Infectious Diseases, vol. 45, 1, pp. 78–84, 2007.
[5]  N. M. Bass, K. D. Mullen, A. Sanyal et al., “Rifaximin treatment in hepatic encephalopathy,” The New England Journal of Medicine, vol. 362, no. 12, pp. 1071–1081, 2010.
[6]  T. Sudha, K. Anandakumar, P. V. Hemalatha, V. R. Ravikumar, and R. Radhakrishnan, “Spectrophotometric estimation methods for rifaximin in tablet dosage form,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 1, pp. 43–46, 2010.
[7]  N. . Bidyut, P. Amrutansu, and A. Mathrusri, “Spectrophotometric estimation of rifaximin in pure and tablet dosage form,” International Journal of Pharmacy and Technology, vol. 2, no. 4, pp. 1098–1104, 2010.
[8]  T. Sudha, P. V. Hemalatha, V. R. Ravikumar, R. Jothi, and M. Radhakrishnan, “Development and validation of RP-HPLC method for the estimation of rifaximin in bulk and in tablet dosage form,” Asian Journal of Pharmaceutical and Clinical Research, vol. 2, no. 4, pp. 112–116, 2009.
[9]  R. N. Rao, D. D. Shinde, and S. B. Agawane, “Rapid determination of rifaximin in rat serum and urine by direct injection on to a shielded hydrophobic stationary phase by HPLC,” Biomedical Chromatography, vol. 23, no. 6, pp. 563–567, 2009.
[10]  M. M. Annapurna, B. S. PavanKumar, and B. Venkatesh, “Development and validation of a stability-indicating high performance liquid chromatographic assay for rifaximin in bulk and pharmaceutical dosage forms,” Drug Invention Today, vol. 4, pp. 430–434, 2012.
[11]  X. Zhang, J. Duan, K. Li, L. Zhou, and S. Zhai, “Sensitive quantification of rifaximin in human plasma by liquid chromatography-tandem mass spectrometry,” Journal of Chromatography B, vol. 850, no. 1-2, pp. 348–355, 2007.
[12]  B. R. Challa, M. R. Kotaiah, and B. R. Chandu, “HPLC method for determination of rifaximin in human plasma using tandem mass spectrometry detection,” East and Central African Journal of Pharmaceutical Sciences, vol. 13, pp. 78–84, 2010.
[13]  M. Bakshi and S. Singh, “Development of validated stability indicating assay methods—critical review,” Journal of Pharmaceutical and Biomedical Analysis, vol. 28, no. 6, pp. 1011–1040, 2002.
[14]  S. K. Motwani, R. K. Khar, F. J. Ahmad, S. Chopra, K. Kohli, and S. Talegaonkar, “Application of a validated stability-indicating densitometric thin-layer chromatographic method to stress degradation studies on moxifloxacin,” Analytica Chimica Acta, vol. 582, no. 1, pp. 75–82, 2007.
[15]  N. Kaul, H. Agrawal, B. Patil, A. Kakad, and S. R. Dhaneshwar, “Application of stability-indicating HPTLC method for quantitative determination of metadoxine in pharmaceutical dosage form,” II Farmaco, vol. 60, no. 4, pp. 351–360, 2005.
[16]  A. Venkatachalam and V. S. Chatterjee, “Stability-indicating high performance thin layer chromatography determination of paroxetine hydrochloride in bulk drug and pharmaceutical formulations,” Analytica Chimica Acta, vol. 598, no. 2, pp. 312–317, 2007.
[17]  I. A. Naguib and M. Abdelkawy, “Development and validation of stability indicating HPLC and HPTLC methods for determination of sulpiride and mebeverine hydrochloride in combination,” European Journal of Medicinal Chemistry, vol. 45, no. 9, pp. 3719–3725, 2010.
[18]  N. Kaul, H. Agrawal, A. R. Paradkar, and K. R. Mahadik, “Stability indicating high-performance thin-layer chromatographic determination of nelfinavir mesylate as bulk drug and in pharmaceutical dosage form,” Analytica Chimica Acta, vol. 502, no. 1, pp. 31–38, 2004.
[19]  I. C. H. guideline, “Validation of analytical procedures: methodology (Q2R1),” in Proceedings of the International Conference on Harmonization, Food and Drug Administration, Geneva, switzerland, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133