An accurate, precise, sensitive, and rapid isocratic reversed phase high-performance liquid chromatographic (RP-HPLC) method for the analysis of olanzapine (OLP) in bulk drug and in tablets has been developed and validated. Analysis was performed on a 150?mm × 4.6?mm, 5?μm particle Intersil ODS 3V column with 10?mM disodium hydrogen phosphate buffer (pH 7.4)-acetonitrile (35?:?65) (v/v) as mobile phase at a flow rate of 1.0?mL?min?1 with UV detection at 254?nm; the constant column temperature was 40°C. The runtime under these chromatographic conditions was less than 8?min. The calibration plot was linear over the concentration range of 2.5–20.0?μg?mL?1 with limits of detection and quantification values of 50 and 200?ng?mL?1, respectively. The precision and accuracy of the method were assessed by determination of validation data for precision (intraday RSD values of 0.11–0.28%, interday RSD values of 0.15–0.46%), accuracy (0.87–2.80% intraday, 0.33–1.80% interday), and specificity, in accordance with the ICH guidelines. The stability of standard solution and tablet extract was also studied over a period of 24?h. The method was applied for the determination of OLP in tablets with satisfactory results. 1. Introduction Olanzapine (OLP), chemically known as 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno-[ ][ ] benzodiazepine (Figure 1), is the most commonly prescribed second generation neuroleptic agent for the treatment of schizophrenia and other psychotic disorders. Figure 1: Structure of OLP. A complete literature survey of analytical methods for OLP is done. Titrimetry [1–3], visible spectrophotometry [2, 4–10], kinetic spectrophotometry [11], UV-spectrophotometry [1, 12], and capillary zone electrophoresis and linear voltammetry [12] have been reported for the quantification of OLP in pharmaceuticals. High-performance thin layer chromatography (HPTLC) has been used to quantify OLP in pharmaceuticals [13–15]. Several liquid chromatographic methods have also been reported for the assay of OLP in pharmaceuticals and/or biological materials. High performance liquid chromatography (HPLC) with UV-detection has been applied for the determination of the drug in human blood serum [16–18] and blood plasma [19–21]. The drug in blood plasma/whole blood has also been assayed by HPLC with amperometric [22, 23], coulometric [24], and MS [25, 26] detection. OLP in rat brain is reported to have been determined by HPLC with coulometric detection [27] whereas for its assay in breast milk [28], the same technique with electrochemical detection has been employed. HPLC with
References
[1]
S. Firdous, T. Aman, and A.-U. Nisa, “Determination of olanzapine by UV spectrophotometry and non-aqueous titration,” Journal of the Chemical Society of Pakistan, vol. 27, no. 2, pp. 163–167, 2005.
[2]
K. Basavaiah and S. A. M. Abdulrahman, “Sensitive and selective methods for the determination of olanzapine in pharmaceuticals using N-bromosuccinimide and two dyes,” International Journal of ChemTech Research, vol. 2, no. 1, pp. 660–668, 2010.
[3]
K. Basavaiah, N. Rajendraprasad, and K. B. Vinay, “Microtitrimetric determination of a drug content of pharmaceuticals containing olanzapine in non-aqueous medium,” Chemical Industry and Chemical Engineering Quarterly, vol. 15, no. 2, pp. 77–81, 2009.
[4]
A. Jasi?ska and E. Nalewajko, “Batch and flow-injection methods for the spectrophotometric determination of olanzapine,” Analytica Chimica Acta, vol. 508, no. 2, pp. 165–170, 2004.
[5]
A. Krebs, B. Starczewska, H. Puzanowska-Tarasiewicz, and J. ?led?, “Spectrophotometric determination of olanzapine by its oxidation with N-bromosuccinimide and cerium(IV)sulfate,” Analytical Sciences, vol. 22, no. 6, pp. 829–833, 2006.
[6]
N. Rajendraprasad, K. Basavaiah, K. Tharpa, and K. B. Vinay, “Quantitative determination of olanzapine in tablets with visible spectrophotometry using cerium(IV)sulphate and based on redox and complexation reactions,” Eurasian Journal of Analytical Chemistry, vol. 4, pp. 193–203, 2009.
[7]
N. Rajendraprasad and K. Basavaiah, “Highly sensitive spectrophotometric determination of olanzapine using cerium(IV) and iron(II) complexes of 1,10-phenanthroline and 2,2′-bipyridyl,” Journal of Analytical Chemistry, vol. 65, no. 5, pp. 482–488, 2010.
[8]
K. Basavaiah, A. M. A. Sameer, and K. B. Vinay, “New extractive spectrophotometric methods for the determination of olanzapine in pharmaceutical formulatins using bromocresol green,” Jordan Journal of Chemistry, vol. 5, pp. 101–117, 2010.
[9]
N. Rajendraprasad and K. Basavaiah, “Determination of olanzapine by spectrophotometry using permanganate,” Brazilian Journal of Pharmaceutical Sciences, vol. 45, no. 3, pp. 539–550, 2009.
[10]
K. Basavaiah, K. Tharpa, N. Rajendraprasad, S. G. Hiriyanna, and K. B. Vinay, “Spectrophotometric determination of antipsychotic drug olanzapine in pharmaceuticals,” Jordan Journal of Chemistry, vol. 4, no. 1, pp. 65–76, 2009.
[11]
A. A. Mohamed, “Kinetic and maximum-absorbance spectrophotometric methods for the determination of olanzapine,” Monatshefte für Chemie, vol. 139, no. 9, pp. 1005–1010, 2008.
[12]
M. A. Raggi, G. Casamenti, R. Mandrioli, G. Izzo, and E. Kenndler, “Quantitation of olanzapine in tablets by HPLC, CZE, derivative spectrometry and linear voltammetry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 23, no. 6, pp. 973–981, 2000.
[13]
R. B. Patel, M. R. Patel, K. K. Bhari, and B. G. Patel, “Development and validation of an HPTLC method for determination of olanzapine in formulations,” Journal of AOAC International, vol. 93, no. 3, pp. 811–819, 2010.
[14]
C. Shah, B. Suhagia, N. Shah, D. Patel, and N. Patel, “Stability-indicating simultaneous HPTLC method for olanzapine and fluoxetine in combined tablet dosage form,” Indian Journal of Pharmaceutical Sciences, vol. 70, no. 2, pp. 251–255, 2008.
[15]
S. Patel and N. J. Patel, “Simultaneous RP-HPLC and HPTLC estimation of fluoxetine hydrochloride and olanzapine in tablet dosage forms,” Indian Journal of Pharmaceutical Sciences, vol. 71, no. 4, pp. 477–480, 2009.
[16]
O. V. Olesen and K. Linnet, “Determination of olanzapine in serum by high-performance liquid chromatography using ultraviolet detection considering the easy oxidability of the compound and the presence of other psychotropic drugs,” Journal of Chromatography B: Biomedical Applications, vol. 714, no. 2, pp. 309–315, 1998.
[17]
H. Weigmann, S. H?rtter, S. Maehrlein et al., “Simultaneous determination of olanzapine, clozapine and demethylated metabolites in serum by on-line column-switching high-performance liquid chromatography,” Journal of Chromatography B: Biomedical Sciences and Applications, vol. 759, no. 1, pp. 63–71, 2001.
[18]
O. V. Olesen, B. Poulsen, and K. Linnet, “Fully automated on-line determination of olanzapine in serum for routine therapeutic drug monitoring,” Therapeutic Drug Monitoring, vol. 23, no. 1, pp. 51–55, 2001.
[19]
C. D'Arrigo, G. Migliardi, V. Santoro, and E. Spina, “Determination of olanzapine in human plasma by reversed-phase high-performance liquid chromatography with ultraviolet detection,” Therapeutic Drug Monitoring, vol. 28, no. 3, pp. 388–393, 2006.
[20]
L. J. Dusci, L. P. Hackett, L. M. Fellows, and K. F. Ilett, “Determination of olanzapine in plasma by high-performance liquid chromatography using ultraviolet absorbance detection,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 773, no. 2, pp. 191–197, 2002.
[21]
M. A. Raggi, G. Casamenti, R. Mandrioli, and V. Volterra, “A sensitive high-performance liquid chromatographic method using electrochemical detection for the analysis of olanzapine and desmethylolanzapine in plasma of schizophrenic patients using a new solid-phase extraction procedure,” Journal of Chromatography B: Biomedical Sciences and Applications, vol. 750, no. 1, pp. 137–146, 2001.
[22]
M. A. Raggi, G. Casamenti, R. Mandrioli, S. Fanali, D. De Ronchi, and V. Volterra, “Determination of the novel antipsychotic drug olanzapine in human plasma using HPLC with amperometric detection,” Chromatographia, vol. 51, no. 9-10, pp. 562–566, 2000.
[23]
M. A. Raggi, R. Mandrioli, C. Sabbioni, N. Ghedini, S. Fanali, and V. Volterra, “Determination of olanzapine and desmethylolanzapine in the plasma of schizophrenic patients by means of an improved HPLC method with amperometric detection,” Chromatographia, vol. 54, no. 3-4, pp. 203–207, 2001.
[24]
M. A. Saracino, A. Koukopoulos, G. Sani, M. Amore, and M. A. Raggi, “Simultaneous high-performance liquid chromatographic determination of olanzapine and lamotrigine in plasma of bipolar patients,” Therapeutic Drug Monitoring, vol. 29, no. 6, pp. 773–780, 2007.
[25]
E. Choong, S. Rudaz, A. Kottelat, D. Guillarme, J.-L. Veuthey, and C. B. Eap, “Therapeutic drug monitoring of seven psychotropic drugs and four metabolites in human plasma by HPLC-MS,” Journal of Pharmaceutical and Biomedical Analysis, vol. 50, no. 5, pp. 1000–1008, 2009.
[26]
M. Josefsson, M. Roman, E. Skogh, and M.-L. Dahl, “Liquid chromatography/tandem mass spectrometry method for determination of olanzapine and N-desmethylolanzapine in human serum and cerebrospinal fluid,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 3, pp. 576–582, 2010.
[27]
M. A. Saracino, O. Gandolfi, R. Dall'Olio, L. Albers, E. Kenndler, and M. A. Raggi, “Determination of Olanzapine in rat brain using liquid chromatography with coulometric detection and a rapid solid-phase extraction procedure,” Journal of Chromatography A, vol. 1122, no. 1-2, pp. 21–27, 2006.
[28]
S. C. Kasper, E. L. Mattiuz, S. P. Swanson, J. A. Chiu, J. T. Johnson, and C. O. Garner, “Determination of olanzapine in human breast milk by high-performance liquid chromatography with electrochemical detection,” Journal of Chromatography B: Biomedical Sciences and Applications, vol. 726, no. 1-2, pp. 203–209, 1999.
[29]
X. Xuejun and T. Zhonghua, “Determination of olanzapine and its tablets by HPLC,” Zhongguo Yiyao Gongye Zazhi, vol. 35, pp. 46–48, 2004.
[30]
A. Pathak and S. J. Rajput, “Development of a stability-indicating HPLC method for simultaneous determination of olanzapine and fluoxetine in combined dosage forms,” Journal of Chromatographic Science, vol. 47, no. 7, pp. 605–611, 2009.
[31]
B. V. Reddy, K. V. N. S. Reddy, J. Sreeramulu, and G. V. Kanumula, “Simultaneous determination of olanzapine and fluoxetine by HPLC,” Chromatographia, vol. 66, no. 1-2, pp. 111–114, 2007.
[32]
C. R. Shah, N. J. Shah, B. N. Suhagia, and N. M. Patel, “Simultaneous assay of olanzapine and fluoxetine in tablets by column high-performance liquid chromatography and high-performance thin-layer chromatography,” Journal of AOAC International, vol. 90, no. 6, pp. 1573–1578, 2007.
[33]
S. G. Hiriyanna, K. Basavaiah, P. S. K. Goud, V. Dhayanithi, K. Raju, and H. N. Pati, “Identification and characterization of olanzapine degradation products under oxidative stress conditions,” Acta Chromatographica, vol. 20, no. 1, pp. 81–93, 2008.
[34]
International Conference on Hormonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1), Complementary Guideline on Methodology dated November 1996, ICH, London, UK, 2005.
[35]
M. Zeaiter, J.-M. Roger, V. Bellon-Maurel, and D. N. Rutledge, “Robustness of models developed by multivariate calibration. Part I: the assessment of robustness,” Trends in Analytical Chemistry, vol. 23, no. 2, pp. 157–170, 2004.
[36]
M. Mulholland, “Ruggedness testing in analytical chemistry,” Trends in Analytical Chemistry, vol. 7, no. 10, pp. 383–389, 1988.