Equilibrium studies have been carried out on complex formation of M2+ ions (M?=?Ni and Cu) with L?=?barbituric acid (BA) in aqueous solution at °C and with an ionic strength of ?M (KNO3) in aqueous medium. The basicity of the ligand was also assessed by the determination of the dissociation constants of the ligand. The experimental pH titration data were analyzed with the help of the BEST computer program in order to evaluate the stability constants of the various species formed. The stability constants of the binary systems decrease in the order of Cu(II)?>?Ni(II). Distribution diagrams for the species were drawn showing the concentrations of individual species as a function of pH by the SPE software program. 1. Introduction Organotransition-metal complexes formed with biologically active ligands have attracted great attention in recent years. Studies of such complexes in biological systems can lead to a better understanding of the roles of these ligands and can also contribute to the development of metal-based chemotherapeutic agents. Pyrimidine ring-containing compounds can be found in nucleic acids, various vitamins, and coenzymes and they play an important role in many biological systems [1, 2]. In nucleic acids, they are related to anticancer chemotherapeutic antimetabolites [3]. Pyrimidine metal complexes have been studied in recent years because of their great variety of biological activities such as antimalarial, antibacterial, antitumoral, antiviral activities, and so forth [4–10]. Despite the multitude of coordination complexes of pyrimidines, the organometallic chemistry of these ligands received little attention, mostly from Beck and coworkers [11, 12]. Barbiturates are the derivatives of barbituric acid (2,4,6-trioxypyrimidine) (Scheme 1). These drugs are used for many reasons such as hypnotics, sedatives, or anesthetics [13, 14]. They also affect the motor and sensory functions, and they are used as cures for anxiety, epilepsy, and other psychiatric disorders [15, 16]. The production process of plastics and pharmaceuticals requires the uses of barbituric acid. Introduced as one of the first medical use of barbiturates, barbital diethylbarbituric acid is known as veronal, or diemal [17]. The first psychologically active drug, barbital or veronal was introduced in 1903 by E. Fischer [18]. Only a few barbiturates have anticonvulsant properties, although many of them have sedative-hypnotic attributes. However, most barbiturates cause convulsions at large doses. Phenobarbital (5 ethyl-5 phenyl barbituric acid) is used for the treatment of
References
[1]
F. Hueso-Ure?a, N. A. Illán-Cabeza, M. N. Moreno-Carretero, J. M. Martínez-Martos, and M. J. Ramírez-Expósito, “Synthesis and spectroscopic studies on the new Schiff base derived from the 1?:?2 condensation of 2,6-diformyl-4-methylphenol with 5-aminouracil (BDF5AU) and its transition metal complexes: influence on biologically active peptides-regulating aminopeptidases,” Journal of Inorganic Biochemistry, vol. 94, no. 4, pp. 326–334, 2003.
[2]
M. S. Refat, S. A. El-Korashy, and A. S. Ahmed, “A convenient method for the preparation of barbituric and thiobarbituric acid transition metal complexes,” Spectrochimica Acta A, vol. 71, no. 3, pp. 1084–1094, 2008.
[3]
A. Tsunoda, M. Shibusawa, Y. Tsunoda, N. Yasuda, K. Nakao, and M. Kusano, “A model for sensitivity determination of anticancer agents against chemically-induced colon cancer in rats,” Anticancer Research, vol. 14, no. 6B, pp. 2637–2642, 1994.
[4]
E. S. Raper, “Complexes of heterocyclic thione donors,” Coordination Chemistry Reviews, vol. 61, pp. 115–184, 1985.
[5]
J. S. Casas, E. E. Castellano, M. D. Couce et al., “A gold(I) complex with a vitamin K3 derivative: characterization and antitumoral activity,” Journal of Inorganic Biochemistry, vol. 100, no. 11, pp. 1858–1860, 2006.
[6]
M. J. M. Campbell, “Transition metal complexes of thiosemicarbazide and thiosemicarbazones,” Coordination Chemistry Reviews, vol. 15, no. 2-3, pp. 279–319, 1975.
[7]
M. C. Rodriguez-Argüelles, M. B. Ferrari, G. G. Fava et al., “2,6-Diacetylpyridine bis(thiosemicarbazones) zinc complexes: synthesis, structure, and biological activity,” Journal of Inorganic Biochemistry, vol. 58, no. 3, pp. 157–175, 1995.
[8]
J. S. Casas, M. S. García-Tasende, C. Maichle-M?ssmer et al., “Synthesis, structure, and spectroscopic properties of acetato (dimethyl) (pyridine-2-carbaldehydethiosemicarbazonato)tin(IV) acetic acid solvate, [SnMe2(PyTSC)(OAc)].HOAc. Comparison of its biological activity with that of some structurally related diorganotin(IV) bis (thiosemicarbazonates),” Journal of Inorganic Biochemistry, vol. 62, no. 1, pp. 41–55, 1996.
[9]
M. B. Ferrari, G. G. Fava, P. Tarasconi, R. Albertini, S. Pinelli, and R. Starcich, “Synthesis, spectroscopic and structural characterization, and biological activity of aquachloro(pyridoxal thiosemicarbazone) copper(II) chloride,” Journal of Inorganic Biochemistry, vol. 53, no. 1, pp. 13–25, 1994.
[10]
U. Koch, B. Attenni, S. Malancona et al., “2-(2-Thienyl)-5,6-dihydroxy-4-carboxypyrimidines as inhibitors of the hepatitis C virus NS5B polymerase: discovery, SAR, modeling, and mutagenesis,” Journal of Medicinal Chemistry, vol. 49, no. 5, pp. 1693–1705, 2006.
[11]
W. Beck and N. Kottmair, “Neue übergangsmetallkomplexe mit Nuclein-Basen und Nucleosiden,” Chemische Berichte, vol. 109, no. 3, pp. 970–993, 1976.
[12]
N. Kottmair and W. Beck, “Tungsten carbonyl complexes of 2′,3′-O-isopropylideneguanosine and 6-mercaptopurine,” Inorganica Chimica Acta, vol. 34, pp. 137–144, 1979.
[13]
A. Ashnagar, N. G. Naseri, and B. Sheeri, “Novel synthesis of barbiturates,” Chinese Journal of Chemistry, vol. 25, no. 3, pp. 382–384, 2007.
[14]
J. N. Delgado, W. A. Remers, and J. B. Lippincott, Eds., Wilson and Gisvold’s Textbook of Organic Medicinal Pharmaceutical Chemistry, Williams & Wilkins, Philadelphia, Pa, USA, 9th edition, 1991.
[15]
J.-L. Fillaut, I. de Los Rios, D. Masi, A. Romerosa, F. Zanobini, and M. Peruzzini, “Synthesis and structural characterization of (carbene)ruthenium complexes binding nucleobases,” European Journal of Inorganic Chemistry, vol. 2002, no. 4, pp. 935–942, 2002.
[16]
?. Temiz-Arpaci, A. ?zdemir, I. Yal?in, I. Yildiz, E. Aki-?ener, and N. Altanlar, “Synthesis and antimicrobial activity of some 5-[2-(morpholin-4-yl) acetamido] and/or 5-[2-(4-substituted piperazin-1-yl)acetamido]-2-(p-substituted phenyl)benzoxazoles,” Archiv der Pharmazie, vol. 338, no. 2-3, pp. 105–111, 2005.
[17]
T. W. G. Solomons and C. B. Fryhle, Organic Chemistry, John Wiley & Sons, Hoboken, NJ, USA, 9th edition, 2008.
[18]
J. H. Block and J. M. Beale, Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 11th edition, 2004.
[19]
W. O. Foye, T. L. Lemke, and D. A. Williams, Principles of Medicinal Chemistry, Williams & Wilkins, Philadelphia, Pa, USA, 4th edition, 1995.
[20]
N. M. Korotchenko and N. A. Skorik, “Interaction of copper(II) and iron(III) with barbituric acid,” Russian Journal of Inorganic Chemistry, vol. 45, no. 12, pp. 1945–1948, 2000.
[21]
G. Schwarzenbach and H. Flaschka, Complexometric Titrations, Interscience, New York, NY, USA, 1969.
[22]
A. E. Martell and R. J. Motekaitis, Determination and Use of Stability Constants, Wiley-VCH, New York, NY, USA, 1989.
[23]
M.-J. Blais, O. Enea, and G. Berthon, “Relations structure-réactivité grandeurs thermodynamiques de protonation d'h'et'erocycles saturés et non saturés,” Thermochimica Acta, vol. 20, no. 3, pp. 335–345, 1977.