全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Removal of Hardness of Earth Alkaline Metals from Aqueous Solutions by Ion Exchange Method

DOI: 10.1155/2014/621794

Full-Text   Cite this paper   Add to My Lib

Abstract:

An ion exchange process was introduced as an approach for softening of artificial hard water solutions. A strong acid cation exchange resin, Amberlite IR 120 [Na+], was used to reduce the hardness of water with the matrix of styrene-divinylbenzene copolymer having functional group as sulfonate. The ion exchange behavior of the ions of calcium and magnesium in synthetic solutions of hard water was investigated with the variables depending on pH, stirrer speed of the solutions and amount of the resin as a function of contact time between resin phase and hard water solution. The maximum ion exchange capacity was found to be 68?mg/g for Ca(II) and 12?mg/g for Mg(II) at pH 3.0. The method is a simple and efficient one to remove calcium and magnesium hardness from hard water solutions with the resin having more selectivity for calcium. 1. Introduction The existence of the soluble Ca(II) and Mg(II) salts has caused unsuitable behavior of hard water solutions for drinking, watering, and the purposes of industrial. The ionic impurities can lead to problems in cooling and heating systems, steam generation, and manufacturing. The high calcium and magnesium concentrations have resulted in clogging of pipelines and heat exchangers through scaling as the form at carbonate, sulfate, or phosphate precipitates. Therefore the necessity of obtaining water having low level of hardness has taken place inside important occupational areas for industries such as leather production [1]. The common methods used for removal of the metals of earth alkaline from aqueous solutions and softening of water can be classified as chemical precipitation, ultrafiltration, reverse osmosis, electrodialysis, adsorption, and ion exchange [2–4]. Water softening using electrochemical techniques has gained attention [5]. The packed bed of polypyrrole/polystyrene sulfonate electrodeposited porous carbon electrode has been used for continuous water softening from flowing artificial hard water solutions [6]. The ion exchange resins have numerous commercial and industrial uses particularly in water purification and removal of metal ions at very low concentrations in chemical process of industries [7]. Some polymeric resins having strongly acid sulfonic or weakly acid carboxylic functionalities are usually used in ion exchange processes [8–11]. A method has been focused on the combination of ultrasound and ion exchange for removal of hardness of calcium and magnesium from water [12]. Some methods have been conducted for removing Ca(II) and Mg(II) from water by using chelating resins with high

References

[1]  A. F. Viero, A. C. R. Mazzarollo, K. Wada, and I. C. Tessaro, “Removal of hardness and COD from retanning treated effluent by membrane process,” Desalination, vol. 149, no. 1–3, pp. 145–149, 2002.
[2]  Z. C. Lei, K. Qian, and L. H. Liu, Principles and Applications of Industrial Water Treatment, Chemical Industry Press, Beijing, China, 2003.
[3]  P. N. Cheremisinoff, Handbook of Water and Wastewater Treatment Technologies, Butterworth-Heinemann, New York, NY, USA, 2001.
[4]  S. Rengaraj, J.-W. Yeon, Y. Kim, Y. Jung, Y.-K. Ha, and W.-H. Kim, “Adsorption characteristics of Cu(II) onto ion exchange resins 252?H and 1500?H: Kinetics, isotherms and error analysis,” Journal of Hazardous Materials, vol. 143, no. 1-2, pp. 469–477, 2007.
[5]  C. Gabrielli, G. Maurin, H. Francy-Chausson, P. Thery, T. T. M. Tran, and M. Tlili, “Electrochemical water softening: principle and application,” Desalination, vol. 201, no. 1–3, pp. 150–163, 2006.
[6]  M. M. Saleh, “Water softening using packed bed of polypyrrole from flowing solutions,” Desalination, vol. 235, no. 1–3, pp. 319–329, 2009.
[7]  E. Pehlivan and T. Altun, “The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50?W synthetic resin,” Journal of Hazardous Materials, vol. 134, no. 1–3, pp. 149–156, 2006.
[8]  E. Maliou, M. Malamis, and P. O. Sakellarides, “Lead and cadmium removal by ion exchange,” Water Science and Technology, vol. 25, no. 1, pp. 133–138, 1992.
[9]  S. Ahmed, S. Chughtai, and M. A. Keane, “The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite,” Separation and Purification Technology, vol. 13, no. 1, pp. 57–64, 1998.
[10]  J. P. Chen and L. Wang, “Characterization of a Ca-alginate based ion-exchange resin and its applications in lead, copper, and zinc removal,” Separation Science and Technology, vol. 36, no. 16, pp. 3617–3637, 2001.
[11]  P. Outola, H. Leinonen, M. Ridell, and J. Lehto, “Acid/base and metal uptake properties of chelating and weak base resins,” Solvent Extraction and Ion Exchange, vol. 19, no. 4, pp. 743–756, 2001.
[12]  M. H. Entezari and M. Tahmasbi, “Water softening by combination of ultrasound and ion exchange,” Ultrasonics Sonochemistry, vol. 16, no. 3, pp. 356–360, 2009.
[13]  K. L. Reece and R. L. Moss, “Removal of contaminating calcium from buffer solutions used in calcium binding assays,” Analytical Biochemistry, vol. 365, no. 2, pp. 274–276, 2007.
[14]  D. K. Huggins, P. B. Queneau, R. C. Ziegler, and H. H. K. Nauta, “Ion exchange purification of ammonium molybdate solutions,” Hydrometallurgy, vol. 6, no. 1-2, pp. 63–73, 1980.
[15]  K. Vaaramaa and J. Lehto, “Removal of metals and anions from drinking water by ion exchange,” Desalination, vol. 155, no. 2, pp. 157–170, 2003.
[16]  W.-T. Yi, C.-Y. Yan, and P.-H. Ma, “Removal of calcium and magnesium from LiHCO3 solutions for preparation of high-purity Li2CO3 by ion-exchange resin,” Desalination, vol. 249, no. 2, pp. 729–735, 2009.
[17]  Y. Ding and Z. Ji, Production and Application of Chromate Compounds, Chemical Industry Press, Beijing, China, 2003.
[18]  S. J. Manio, “Method for Reducing Metal Ion Concentration in Brine Solution,” US Patent 6,103,092, 2000.
[19]  P. Woodberry, G. Stevens, I. Snape, and S. Stark, “Removal of metal contaminants from saline waters at low temperature by an iminodiacetic acid ion-exchange resin, Thala Valley Tip, Casey Station, Antarctica,” Solvent Extraction and Ion Exchange, vol. 23, no. 2, pp. 289–306, 2005.
[20]  A. Agrawal and K. K. Sahu, “Influence of temperature on the exchange of alkaline earth and transition metals on iminodiacetate resin,” Solvent Extraction and Ion Exchange, vol. 23, no. 2, pp. 265–287, 2005.
[21]  A. Agrawal, K. K. Sahu, and J. P. Rawat, “Kinetic studies on the exchange of bivalent metal ions on amberlite IRC-718—an iminodiacetate resin,” Solvent Extraction and Ion Exchange, vol. 21, no. 5, pp. 763–782, 2003.
[22]  A. Agrawal and K. K. Sahu, “Separation and recovery of lead from a mixture of some heavy metals using Amberlite IRC 718 chelating resin,” Journal of Hazardous Materials, vol. 133, no. 1–3, pp. 299–303, 2006.
[23]  M. Laikhtman, J. Riviello, and J. S. Rohrer, “Determination of magnesium and calcium in 30% sodium chloride by ion chromatography with on-line matrix elimination,” Journal of Chromatography A, vol. 816, no. 2, pp. 282–285, 1998.
[24]  Z. Yu, T. Qi, J. Qu, L. Wang, and J. Chu, “Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange,” Journal of Hazardous Materials, vol. 167, no. 1-3, pp. 406–412, 2009.
[25]  C. Ghergheles, V. Ghergheles, T. Romocea et al., “Softening of waste geothermal water using ion exchange resins for environmental protection,” Journal of Environmental Protection and Ecology, vol. 13, no. 3, pp. 1553–1559, 2012.
[26]  C. ?zmetin, ?. Aydin, M. M. Kocakerim, M. Korkmaz, and E. ?zmetin, “An empirical kinetic model for calcium removal from calcium impurity-containing saturated boric acid solution by ion exchange technology using Amberlite IR-120 resin,” Chemical Engineering Journal, vol. 148, no. 2-3, pp. 420–424, 2009.
[27]  C. ?zmetin and ?. Aydin, “A semi-empirical model for adsorption of magnesium ion from magnesium impurity-containing saturated boric acid solutions on amberlite IR-120 resin,” Fresenius Environmental Bulletin, vol. 16, no. 7, pp. 720–725, 2007.
[28]  Rohm and Haas Company, “Water Treatment Resin (Industrial Grade),” Product Data Sheet, IE-489 EDS, Corporate Headquarters 100 Independence Mall West Philadelphia, USA, 1998.
[29]  Analytical Methods Varian Techtron Pty Limited Mulgrave Victoria Australia Publication no: 85-100009-00, 1989.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133