全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of Cr-Curcumin Complex by Differential Pulse Voltammetry and UV-Vis Spectrophotometry

DOI: 10.1155/2014/372576

Full-Text   Cite this paper   Add to My Lib

Abstract:

Differential Pulse Voltammetry (DPV) and UV-Vis techniques were used in characterizing the complexation of chromium with curcumin. It was observed that chromium complexed with curcumin in a 1?:?3 ratio. The experimental values that were used to calculate this ratio were independently determined by the two techniques used. The values obtained from each technique agree with each other reasonably well, within limits of experimental error. The stability constant or formation constant, , of the complex, , was determined using the Lingane equation and Gibb’s free energy of formation was calculated as ?58.18?kJ. 1. Introduction The trivalent chromium which was used in this work is known to possess numerous health benefits, which include its enhancement of insulin action in regulating blood sugar level—critical factor in diabetic patients, weight loss, regulation of blood pressure, and cholesterol control [1–7]. In its use in weight loss, chromium picolinate, Cr(Pc)3, is generally used [8–11], although it has been seriously criticized about its effectiveness [12]. However, Cr(Pc)3 has been used to augment the chromium intake through dietary products [9]. On the other hand, curcumin, a phytochemical, has been known to exhibit many beneficial health effects including its anticarcinogenic [13–15] and antioxidative [16–21] activities. The internet is replete with enormous information and advertisement about using these chemicals as supplements for a better life. It is therefore anticipated that a complex formed by this mineral, Cr, and the phytochemical, curcumin, should have greater beneficial health effect. The physicochemical and stability study of this complex should therefore be a good candidate to study and characterize. This is the theme of this work. 2. Experimental 2.1. Chemicals Certified chromic nitrate was obtained from Fisher Scientific. 98% pure curcumin and 98% pure tetramethylammonium bromide (used as supporting electrolyte), were obtained from Acros Organics. Analytical reagent grade of DMSO was obtained from Aldrich Chemicals. 2.2. Instruments Electrochemical. All electrochemical experiments were conducted using a three-electrode system comprising of the working electrode (1.0?mm diameter) Glassy Carbon Electrode (GCE), obtained from Cypress Systems, a wound platinum wire as the counter electrode, and a commercial calomel electrode as the reference electrode which was obtained from Fisher Scientific. The reaction was carried out in a 1-compartment electrochemical cell. A computer-controlled electrochemical analyzer system supplied by Cypress

References

[1]  W. T. Cefalu and F. B. Hu, “Role of chromium in human health and in diabetes,” Diabetes Care, vol. 27, no. 11, pp. 2741–2751, 2004.
[2]  J. Higdon, V. J. Drake, and R. A. Anderson, “Micronutrients: LPI research Newsletter,” 2007, http://www.lpi.oregonstate.edu/infocenter/minerals/chromium.
[3]  NIH Office of Dietary Supplements, “Chromium,” http://ods.od.nih.gov/factsheet/Chromium.
[4]  J. S. Striffler, J. S. Law, M. M. Polansky, S. J. Bhathena, and R. A. Anderson, “Chromium improves insulin response to glucose in rats,” Metabolism, vol. 44, no. 10, pp. 1314–1320, 1995.
[5]  W. Mertz, “Chromium in human nutrition: a review,” Journal of Nutrition, vol. 123, no. 4, pp. 626–633, 1993.
[6]  The University of Maryland Medical Center, “Chromium,” http://www.umm.edu/altmed/articles/chromium.
[7]  Drugs.com, “Chromium Picolinate,” http://www.drugs.com/mtm/chromium-icolinate.htm.
[8]  WebMD, “Find a Vitamin or Supplement,” http://www.webmd.com/vitaminssupplements/incgredientmono-932-CHROMIUM.aspx.
[9]  M. H. Pittler and E. Ernst, “Dietary supplements for body-weight reduction: a systematic review,” American Journal of Clinical Nutrition, vol. 79, no. 4, pp. 529–536, 2004.
[10]  M. H. Pittler, C. Stevinson, and E. Ernst, “Chromium picolinate for reducing body weight: meta-analysis of randomized trials,” International Journal of Obesity, vol. 27, no. 4, pp. 522–529, 2003.
[11]  G. W. Evans and T. D. Bowman, “Chromium picolinate increases membrane fluidity and rate of insulin internalization,” Journal of Inorganic Biochemistry, vol. 46, no. 4, pp. 243–250, 1992.
[12]  M. S. Mozaffari, R. Abdelsayed, J. Y. Liu, H. Wimborne, A. El-Remessy, and A. El-Marakby, “Effects of chromium picolinate on glycemic control and kidney of the obese zucker rat,” Nutrition and Metabolism, vol. 6, article 51, 2009.
[13]  K. Krishnaswamy and K. Polasa, “Nonnutrients and cancer prevention,” ICMR Bulletin, vol. 31, pp. 1–9, 2001.
[14]  Alternative Medicine Alert, “Anticancer Potential of Tumeric,” 2003, http://www.thepowerhour.com/curmin/tumeric.
[15]  W.-H. Chan and H.-J. Wu, “Protective effects of curcumin on methylglyoxal-induced oxidative DNA damage and cell injury in human mononuclear cells,” Acta Pharmacologica Sinica, vol. 27, no. 9, pp. 1192–1198, 2006.
[16]  F. Dai, W.-F. Chen, B. Zhou, L. Yang, and Z.-L. Liu, “Antioxidative effects of curcumin and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles,” Phytotherapy Research, vol. 23, no. 9, pp. 1220–1228, 2009.
[17]  F. Dai, W.-F. Chen, B. Zhou, L. Yang, and Z.-L. Liu, “Antioxidative effects of curcumin and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles,” Phytotherapy Research, vol. 25, no. 11, p. 1736, 2011.
[18]  O.-S. Baek, O.-H. Kang, Y.-A. Choi et al., “Curcumin inhibits protease-activated receptor-2 and -4-mediated mast cell activation,” Clinica Chimica Acta, vol. 338, no. 1-2, pp. 135–141, 2003.
[19]  B. B. Aggarwal, A. Kumar, and A. C. Bharti, “Anticancer potential of curcumin: preclinical and clinical studies,” Anticancer Research, vol. 23, no. 1, pp. 363–398, 2003.
[20]  M. Iqbal, S. D. Sharma, Y. Okazaki, M. Fujisawa, and S. Okada, “Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity,” Pharmacology and Toxicology, vol. 92, no. 1, pp. 33–38, 2003.
[21]  W.-H. Chan, C.-C. Wu, and J.-S. Yu, “Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells,” Journal of Cellular Biochemistry, vol. 90, no. 2, pp. 327–338, 2003.
[22]  F. Payton, P. Sandusky, and W. L. Alworth, “NMR study of the solution structure of curcumin,” Journal of Natural Products, vol. 70, no. 2, pp. 143–146, 2007.
[23]  Y.-M. Song, J.-P. Xu, L. Ding, Q. Hou, J.-W. Liu, and Z.-L. Zhu, “Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione,” Journal of Inorganic Biochemistry, vol. 103, no. 3, pp. 396–400, 2009.
[24]  I. Stankov, “Curcumin,” in Proceedings of the Chemical and Technical Assessment 61st Joint FAO/WHO Expert Committee on Food Additives, 2004.
[25]  H. Kunkely and A. Vogler, “Photooxidation of N,N′-bis(3,5-di-tert.-butylsalicylidene)-1,2-diamino hexane-manganese(III) chloride (Jacobsen catalyst) in chloroform,” Inorganic Chemistry Communications, vol. 4, no. 12, pp. 692–694, 2001.
[26]  S. V. Jovanovic, S. Steenken, C. W. Boone, and M. G. Simic, “H-atom transfer is a preferred antioxidant mechanism of curcumin,” Journal of the American Chemical Society, vol. 121, no. 41, pp. 9677–9681, 1999.
[27]  B. Zebib, Z. Mouloungui, and V. Noirot, “Stabilization of curcumin by complexation with divalent cations in glycerol/water system,” Bioinorganic Chemistry and Applications, vol. 2010, Article ID 292760, 8 pages, 2010.
[28]  H. H. T?nnesen, M. Másson, and T. Loftsson, “Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability,” International Journal of Pharmaceutics, vol. 244, no. 1-2, pp. 127–135, 2002.
[29]  J. J. Lingane, “Interpretation of the polarographic waves of complex metal ions,” Chemical Reviews, vol. 29, no. 1, pp. 1–35, 1941.
[30]  Y. Kumar, A. Garg, and R. Pandey, “Polarographic reduction of curcumin at dropping mercury electrode,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 2, pp. 314–318, 2012.
[31]  G. W. Luther III, T. F. Rozan, A. Witter, and B. Lewis, “Metal-organic complexation in the marine evironment,” Geochemical Transactions, vol. 2, pp. 65–74, 2001.
[32]  W. C. Hoyle and T. M. Thorpe, “Topics in chemical instrumentation: XCVII. Pulse polarography: a series of student experiments,” Journal of Chemical Education, vol. 55, no. 5, pp. A229–A233, 1978.
[33]  H. Bilinski, R. Huston, and W. Stumm, “Determination of the stability constants of some hydroxo and carbonato complexes of pb(II), cu(II), cd(II) and zn(II) in dilute solutions by anodic stripping voltammetry and differential pulse polarography,” Analytica Chimica Acta, vol. 84, no. 1, pp. 157–164, 1976.
[34]  R. Ernst, H. E. Allen, and K. H. Mancy, “Characterization of trace metal species and measurement by trace metal stability constants by electrochemical techniques,” Water Research, vol. 9, no. 11, pp. 969–979, 1975.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133