A fast, simple, and easily automated method for the determination of two insecticides, diazinon and deltamethrin, and two fungicides, iprodione and prochloraz, in mushroom cultivation compost samples, based on selective pressurised liquid extraction (SPLE) and gas chromatography coupled to tandem mass spectrometry, is presented. The proposed method integrates extraction and clean-up processes in one single step, by adding a clean-up sorbent into the extraction cell. SPLE variables were thoroughly studied by experimental design. First, different clean-up sorbents and extraction solvents were screened at two temperature levels using a multifactor design; resulting Florisil and 1?:?1 acetone-dichloromethane the best combination. Then, temperature, extraction time, and sample-sorbent mass ratio were optimized by a central composite design. Best recoveries were obtained with a 0.4 sample-sorbent ratio, at 105°C and a 2?min extraction time. The SPLE method was characterized in terms of recovery (with values ranging from 81 to 103%), repeatability and intermediate precision (showing relative standard deviations less than 12% in most cases), and sensitivity (providing detection limits between 0.1 and 6?ng?mL?1). However, in spite of the clean-up process a matrix effect was observed and therefore standard addition calibration was recommended. 1. Introduction Compost for mushroom growing is made from several agricultural byproducts (straw, chicken manure, etc.) which are fermented and pasteurised. Therefore, the final product is formed by a complex mixture of nutrients resulting from the organic matter decomposition. During mushroom growing, chemicals such as fungicides, insecticides, or pesticides are added to the crop to maintain the mushroom immune to harmful insects, weeds, or microbes. After growing, exhausted substrate can be reutilised as supplement for crops, soil conditioner, mulch, agent of plant disease suppression, and soil bioremediation [1, 2]. Therefore, the levels and toxicity of these chemicals must be controlled in order to avoid environmental pollution and human exposure to pesticides. The origin, concentration, and degradation of several persistent organic pollutants such as polynuclear aromatic hidrocarbons (PAHs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) in compost have been studied [3] due to emerging concern about their impacts to the environment. Diazinon, iprodione, prochloraz, and deltamethrin (Figure 1) are pesticides commonly used in mushroom cultivation that are able to react as
References
[1]
L. C. C. Ribas, M. M. de Mendon?a, C. M. Camelini, and C. H. L. Soares, “Use of spent mushroom substrates from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: growth promotion and soil bioremediation,” Bioresource Technology, vol. 100, no. 20, pp. 4750–4757, 2009.
[2]
E. Medina, C. Paredes, M. D. Pérez-Murcia, M. A. Bustamante, and R. Moral, “Spent mushroom substrates as component of growing media for germination and growth of horticultural plants,” Bioresource Technology, vol. 100, no. 18, pp. 4227–4232, 2009.
[3]
R. C. Br?ndli, T. D. Bucheli, T. Kupper, R. Furrer, F. X. Stadelmann, and J. Tarradellas, “Persistent organic pollutants in source-separated compost and its feedstock materials—a review of field studies,” Journal of Environmental Quality, vol. 34, no. 3, pp. 735–760, 2005.
[4]
H. Raun Andersen, A. M. Vinggaard, T. H?j Rasmussen, I. M. Gjermandsen, and E. Cecilie Bonefeld-J?rgensen, “Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro,” Toxicology and Applied Pharmacology, vol. 179, no. 1, pp. 1–12, 2002.
[5]
B. Gilbert-López, J. F. García-Reyes, and A. Molina-Díaz, “Sample treatment and determination of pesticide residues in fatty vegetable matrices: a review,” Talanta, vol. 79, no. 2, pp. 109–128, 2009.
[6]
D. ?tajnbaher and L. Zupan?i?-Kralj, “Optimisation of programmable temperature vaporizer-based large volume injection for determination of pesticide residues in fruits and vegetables using gas chromatography-mass spectrometry,” Journal of Chromatography A, vol. 1190, no. 1-2, pp. 316–326, 2008.
[7]
A. Wilkowska and M. Biziuk, “Determination of pesticide residues in food matrices using the QuEChERS methodology,” Food Chemistry, vol. 125, no. 3, pp. 803–812, 2011.
[8]
J. L. Fernández Moreno, F. J. Arrebola Liébanas, A. Garrido Frenich, and J. L. Martínez Vidal, “Evaluation of different sample treatments for determining pesticide residues in fat vegetable matrices like avocado by low-pressure gas chromatography-tandem mass spectrometry,” Journal of Chromatography A, vol. 1111, no. 1, pp. 97–105, 2006.
[9]
J. Haib, I. Hofer, and J. M. Renaud, “Analysis of multiple pesticide residues in tobacco using pressurized liquid extraction, automated solid-phase extraction clean-up and gas chromatography-tandem mass spectrometry,” Journal of Chromatography A, vol. 1020, no. 2, pp. 173–187, 2003.
[10]
K. Kawata, T. Asada, and K. Oikawa, “Determination of pesticides in compost by pressurized liquid extraction and gas chromatography-mass spectrometry,” Journal of Chromatography A, vol. 1090, no. 1-2, pp. 10–15, 2005.
[11]
E. Bj?rklund, S. Sporring, K. Wiberg, P. Haglund, and C. V. Holst, “New strategies for extraction and clean-up of persistent organic pollutants from food and feed samples using selective pressurized liquid extraction,” Trends in Analytical Chemistry, vol. 25, no. 4, pp. 318–325, 2006.
[12]
P. Canosa, D. Pérez-Palacios, A. Garrido-López et al., “Pressurized liquid extraction with in-cell clean-up followed by gas chromatography-tandem mass spectrometry for the selective determination of parabens and triclosan in indoor dust,” Journal of Chromatography A, vol. 1161, no. 1-2, pp. 105–112, 2007.
[13]
M. P. Martínez, J. D. Carrillo, and M. T. Tena, “Determination of brominated diphenyl ethers (from mono- to hexa- congeners) in indoor dust by pressurised liquid extraction with in-cell clean-up and gas chromatography-mass spectrometry,” Analytical and Bioanalytical Chemistry, vol. 397, no. 1, pp. 257–267, 2010.
[14]
M. P. Martínez-Moral and M. T. Tena, “Focused ultrasound solid-liquid extraction and selective pressurised liquid extraction to determine bisphenol A and alkylphenols in sewage sludge by gas chromatography-mass spectrometry,” Journal of Separation Science, vol. 34, no. 18, pp. 2513–2522, 2011.
[15]
D. García-Rodríguez, A. M. Carro-Díaz, R. A. Lorenzo-Ferreira, and R. Cela-Torrijos, “Determination of pesticides in seaweeds by pressurized liquid extraction and programmed temperature vaporization-based large volume injection-gas chromatography-tandem mass spectrometry,” Journal of Chromatography A, vol. 1217, no. 17, pp. 2940–2949, 2010.
[16]
M. Hiemstra and A. de Kok, “Comprehensive multi-residue method for the target analysis of pesticides in crops using liquid chromatography-tandem mass spectrometry,” Journal of Chromatography A, vol. 1154, no. 1-2, pp. 3–25, 2007.