The objective of this study is to investigate the contamination levels of toxic elements (TEs) in the vicinity of the small-scale mining Boroo area, Mongolia. Samples of surface soil, ground water and human hair were collected around the gold washing or milling places, grassland and village areas. After appropriate preparation, all samples were analyzed for major and toxic elements (TEs) by Particle-Induced X-ray Emission Spectrometry (PIXE). Soil texture, conductivity (EC), pH, total organic carbon (TC) and nitrogen (TN) contents were also measured. The enrichment factor (EF) was estimated to assess the level of the contamination and the possible anthropogenic impact in soils from the mining activity. The EFsoil for Cu, As and Pb were in the highest values around gold washing place, indicating that around mining area surface soils were highly enriched by those elements. The Mn, Fe and Ni concentrations of drinking waters exceed the WHO values. The mean concentrations of Ca, Ti, As and Sr were higher in hair of Mongolian miners than in the hair of normal people in Japan, Mongolia and Philippines. These results indicate that the area around gold washing or milling could be the main contamination sources of As and other toxic elements (TEs) in the surface soil samples. 1. Introduction Small-scale mining (artisanal) with metallic mercury is practiced in many developing countries of the world. Small-scale mining is one of the most important sources of toxic elements (TEs) in the environment. Mining generally releases toxic elements such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). The adverse effects of mining activity on the environment as well as human health have been observed in many countries [1–4]. Environmental pollution with TE originated by mines can become an important source of contamination both in soil and water [5–8]. Also the TEs contamination of soils and surface water or groundwater represents a great threat to human health due to its high potential to enter into the food chain. Human scalp hair has been used as an alternative biological material for blood and urine in biomonitoring environmental and occupational exposures of various pollutants (papers), since its sampling is considered less invasive, more convenient to store and transport, and less hazardous to handle. In Mongolia, small-scale mining started in 1998 with few small-scale miners, but the number has increased rapidly. The miners in these areas are almost rural people, who had lost their livestock and harvest during the winter and summer by a natural
References
[1]
A. Samecka-Cymerman and A. J. Kempers, “Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry,” Ecotoxicology and Environmental Safety, vol. 59, no. 1, pp. 64–69, 2004.
[2]
A. Boularbah, C. Schwartz, G. Bitton, and J. L. Morel, “Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils,” Chemosphere, vol. 63, no. 5, pp. 802–810, 2006.
[3]
G. L. Liao, D. X. Liao, and Q. M. Li, “TEs contamination characteristics in soil of different mining activity zones,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 1, pp. 207–211, 2008.
[4]
H. S. Lim, J. S. Lee, H. T. Chon, and M. Sager, “Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea,” Journal of Geochemical Exploration, vol. 96, no. 2-3, pp. 223–230, 2008.
[5]
B. J. Alloway, “The origins of TEs in soils,” in TEs in Soils, B. J. Alloway, Ed., Blackie Academic & Professional, New York, NY, USA, 1995.
[6]
M. C. Jung, “Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine, Korea,” Applied Geochemistry, vol. 16, no. 11-12, pp. 1369–1375, 2001.
[7]
V. Chatain, F. Sanchez, R. Bayard, P. Moszkowicz, and R. Gourdon, “Effect of experimentally induced reducing conditions on the mobility of arsenic from a mining soil,” Journal of Hazardous Materials, vol. 122, no. 1-2, pp. 119–128, 2005.
[8]
A. Concas, C. Ardau, A. Cristini, P. Zuddas, and G. Cao, “Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site,” Chemosphere, vol. 63, no. 2, pp. 244–253, 2006.
[9]
O. Bolormaa, J. Baasansuren, K. Kawasaki, M. Watanabe, and T. Hattori, “PIXE analysis of heavy metals in water samples from a mining area in Mongolia,” Nuclear Instruments and Methods in Physics Research B, vol. 243, no. 1, pp. 161–166, 2006.
[10]
O. Bolormaa, M. Tsuji, K. Kawasaki, S. Narantsetseg, and T. Hattori, “PIXE analysis of trace elements in human hair of patients with liver disorders,” International Journal of PIXE, vol. 16, no. 1-2, pp. 29–38, 2006.
[11]
O. Bolormaa, J. Baasansuren, K. Kawasaki, M. Watanabe, and T. Hattroi, “Total elemental composition analysis of soil samples using the PIXE technique,” Nuclear Instruments and Methods in Physics Research B, vol. 262, no. 2, pp. 385–390, 2007.
[12]
International Organization for Standardization (ISO), “Determination of particle size distribution by gravitational liquid sedimentation methods—part 2: fixed pipette method,” ISO 13317-2, 2001.
[13]
X. Li and I. Thornton, “Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities,” Applied Geochemistry, vol. 16, no. 15, pp. 1693–1706, 2001.
[14]
H. J. M. Bowen, Environmental Chemistry of the Elements, Academic Press, New York, NY, USA, 1979.
[15]
F. J. Zhao, S. P. McGrath, and G. Merrington, “Estimates of ambient background concentrations of trace metals in soils for risk assessment,” Environmental Pollution, vol. 148, no. 1, pp. 221–229, 2007.
[16]
A. P. Mucha, M. T. S. D. Vasconcelos, and A. A. Bordalo, “Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics,” Environmental Pollution, vol. 121, no. 2, pp. 169–180, 2003.
[17]
S. R. Oliva and A. J. F. Espinosa, “Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources,” Microchemical Journal, vol. 86, no. 1, pp. 131–139, 2007.
S. Murao, E. Daisa, K. Sera, V. B. Maglambayan, and S. Futatsugawa, “PIXE measurement of human hairs from a small-scale mining site of the Philippines,” Nuclear Instruments and Methods in Physics Research B, vol. 189, no. 1–4, pp. 168–173, 2002.
[20]
S. Murao, K. Sera, B. Tumenbayar, M. Tsuji, S. Futatsugawa, and T. Waza, “Finding high level arsenic for Mongolian villagers' hair through PIXE technique,” in Proceedings of the 16th International Conference 8 on Ion Beam Analysis, pp. 10–24, Albuquergue, NM, USA, June 2003.
[21]
K. Sera, S. Futatsugawa, and S. Murao, “Quantitative analysis of untreated hair samples for monitoring human exposure to heavy metals Nucl. Inst. and Meth,” Physiological Research, vol. B189, no. 1-4, pp. 174–179, 2002.