全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Allergy  2012 

Conditions Associated with Childhood Asthma in North Texas

DOI: 10.5402/2012/823608

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction. The purpose of this study was to identify significant associations between asthma diagnosis, comorbid conditions, and social problems in children. Method. This study explored data collected in a unique, regional survey of children’s health in north Texas originally administered in 2009 to a random sample of 21,530 households with children from 0 to 14 years of age. Descriptive statistics were compiled for the subsample of children with asthma, associations of interest were identified, and strengths of relevant associations were calculated. Results. The prevalence of asthma in school-aged children in the target area is 19–25%, which exceeds both national and state values. Statistically significant associations were found between asthma and allergies, sleep problems, and tonsillectomy. Significant associations were identified between asthma and school absences, academic problems, and behavior problems in school. There was a significantly greater prevalence of obesity/overweight among children with asthma than without asthma. Discussion. Children with asthma are at high risk for impairment in multiple dimensions. Thorough assessment, including comprehensive medical, social, and environmental histories, is critical in management of pediatric asthma. 1. Introduction Asthma affects individuals of all ages, but in childhood, asthma is the most common chronic disease after dental caries [1]. It is an important public health problem in the United States and its impact is influenced by both genetics and environment. Geography is strongly associated with variations in asthma prevalence. Some densely populated areas in the United States, such as the District of Columbia, Maryland, and Hawaii, experience childhood asthma prevalence rates as high as 17–22% while less populated areas, such as Iowa, Montana, and Nevada, report childhood asthma prevalence as low as 8-9% [2]. There is little information on variations in regions smaller than states. As more investigations of complex interactions between genes, environment, and lifestyle are conducted, urban/regional development (the expansion of built environments into natural areas) as well as natural characteristics of regions may play a greater role in judging the relevance of research findings about children with asthma [3]. Tarrant and six surrounding counties comprise the western end of the Dallas-Fort Worth urban corridor in Texas. This region is interesting in the study of childhood asthma because of high asthma prevalence, a history of poor air quality, rapid development, and abundance of natural

References

[1]  American Academy of Pediatrics Policy Statement, “Oral health risk assessment timing and establishment of the dental home,” Pediatrics, vol. 111, pp. 1113–1116, 2003.
[2]  Centers for Disease Control and Prevention, Child Lifetime Asthma Prevalence Rate (Percent) and Prevalence (Number) by State or Territory: BRFSS, 2010, http://www.cdc.gov/asthma/brfss/2010/child/lifetime/tableL1.htm.
[3]  Centers for Disease Control and Prevention , National Health Interview Survey (NHIS) Data. Lifetime prevalence percents by age: United States, 2009, http://www.cdc.gov/asthma/nhis/09/table2-1.htm.
[4]  J. Z. Smith, “Tarrant still leads Texas in natural gas production,” Star Telegram, Fort Worth, 2011.
[5]  Eastern Research Group, “Natural Gas Air Quality Study (Final Report),” 2011, http://fortworthtexas.gov/gaswells/default.aspx?id=87074.
[6]  L. T. Brewer, Tarrant County Behavioral Risk Factor Surveillance System 2004-2005 Executive Summary, Tarrant County Public Health Department, Fort Worth, Tex, USA, 2005.
[7]  Cook Children's Health System Community-Wide Children's Health Assessment and Planning Survey (CCHAPS), 2008, http://www.cchaps.org/.
[8]  Child and Adolescent Health Measurement Initiative, National Survey of Children's Health, 2007, http://www.nschdata.org/.
[9]  Child and Adolescent Health Measurement Initiative, National survey of children's health, 2006, http://www.nschdata.org/.
[10]  American Lung Association, “Trends in asthma morbidity and mortality,” 2011, http://www.lungusa.org/finding-cures/our-research/trend-reports/asthma-trend-report.pdf.
[11]  Centers for Disease Control and Prevention (CDC), “Summary Health Statistics For U.S. Children: National Health Interview Survey,” Series 10, pp. 4–9, 2007.
[12]  United States Environmental Protection Agency, “Asthma Prevalence,” 2011, http://cfpub.epa.gov/eroe/index.cfm?fuseaction=detail.viewInd&lv=list.listbyalpha& r=235294&subtop=381.
[13]  R. J. Delfino, “Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research,” Environmental Health Perspectives, vol. 110, supplement 4, pp. 573–589, 2002.
[14]  R. McConnell, K. Berhane, L. Yao et al., “Traffic, susceptibility, and childhood asthma,” Environmental Health Perspectives, vol. 114, no. 5, pp. 766–772, 2006.
[15]  Consumer Expenditure Survey, U.S. Bureau of Labor Statistics, “Table 56: Income before taxes: Shares of annual aggregate expenditures and sources of income, Consumer Expenditure Survey, 2010,” 2011, http://www.bls.gov/cex/2010/aggregate/income.pdf.
[16]  N. K. Cauthen, “Testimony on Measuring Poverty in America,” Testimony before the House Subcommittee on Income Security and Family Support, Committee on Ways and Means, 2007, http://www.nccp.org/publications/pdf/text_752.pdf.
[17]  Texas Health and Human Services Commission (THHSC), Texas Medicaid and CHIP in Perspective (the "Pink Book"), 8th edition, 2011, http://www.hhsc.state.tx.us/medicaid/reports/PB8/PinkBookTOC.html.
[18]  T. D. Hill, L. M. Graham, and V. Divgi, “Racial disparities in pediatric asthma: a review of the literature,” Current Allergy and Asthma Reports, vol. 11, no. 1, pp. 85–90, 2011.
[19]  Y. Zeldin, M. I. Kidon, E. Magen et al., “Impact of specific allergen sensitization on the prevalence of asthma in patients with allergic rhinitis from adjacent distinct geographic areas,” Annals of Allergy, Asthma and Immunology, vol. 101, no. 1, pp. 30–34, 2008.
[20]  S. Hamouda, C. Karila, T. Connault, P. Scheinmann, and J. De Blic, “Allergic rhinitis in children with asthma: a questionnaire-based study,” Clinical and Experimental Allergy, vol. 38, no. 5, pp. 761–766, 2008.
[21]  J. Bousquet, N. Khaltaev, A. A. Cruz et al., “Allergic rhinitis and its impact on asthma (ARIA) 2008,” Allergy, vol. 63, no. 86, pp. 8–160, 2008.
[22]  B. Schramm, B. Ehlken, A. Smala, K. Quednau, K. Berger, and D. Nowak, “Cost of illness of atopic asthma and seasonal allergic rhinitis in Germany: 1-yr retrospective study,” European Respiratory Journal, vol. 21, no. 1, pp. 116–122, 2003.
[23]  J. Crystal-Peters, C. Neslusan, W. H. Crown, and A. Torres, “Treating allergic rhinitis in patients with comorbid asthma: the risk of asthma-related hospitalizations and emergency department visits,” Journal of Allergy and Clinical Immunology, vol. 109, no. 1, pp. 57–62, 2002.
[24]  A. D. Goldbart, J. Krishna, R. C. Li, L. D. Serpero, and D. Gozal, “Inflammatory mediators in exhaled breath condensate of children with obstructive sleep apnea syndrome,” Chest, vol. 130, no. 1, pp. 143–148, 2006.
[25]  R. Ersu, A. R. Arman, D. Save et al., “Prevalence of snoring and symptoms of sleep-disordered breathing in primary school children in Istanbul,” Chest, vol. 126, no. 1, pp. 19–24, 2004.
[26]  ?. Ceran, S. Aka, D. ?ztemel, B. Uyanik, and T. ?zkozaci, “The relationship of tonsillar hyperplasia and asthma in a group of asthmatic children,” International Journal of Pediatric Otorhinolaryngology, vol. 68, no. 6, pp. 775–778, 2004.
[27]  M. Fagnano, E. Van Wijngaarden, H. V. Connolly, M. A. Carno, E. Forbes-Jones, and J. S. Halterman, “Sleep-disordered breathing and behaviors of inner-city children with asthma,” Pediatrics, vol. 124, no. 1, pp. 218–225, 2009.
[28]  B. A. Smart, “Pediatric rhinosinusitis and its relationship to asthma and allergic rhinitis,” Pediatric Asthma, Allergy and Immunology, vol. 18, no. 2, pp. 88–98, 2005.
[29]  G. M. Kieckhefer, M. J. Lentz, S. Y. Tsai, and T. M. Ward, “Parent-child agreement in report of nighttime respiratory symptoms and sleep disruptions and quality,” Journal of Pediatric Health Care, vol. 23, no. 5, pp. 315–326, 2009.
[30]  L. Cottrell, W. A. Neal, C. Ice, M. K. Perez, and G. Piedimonte, “Metabolic abnormalities in children with asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 4, pp. 441–448, 2011.
[31]  C. D. Bethell, M. D. Kogan, B. B. Strickland, E. L. Schor, J. Robertson, and P. W. Newacheck, “A national and state profile of leading health problems and health care quality for US children: key insurance disparities and across-state variations,” Academic Pediatrics, vol. 11, supplement 3, pp. S22–S33, 2011.
[32]  B. McGinley and N. M. Punjabi, “Obesity, metabolic abnormalities, and asthma: establishing causal links,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 4, pp. 424–425, 2011.
[33]  S. O. Shaheen, J. A. C. Sterne, S. M. Montgomery, and H. Azima, “Birth weight, body mass index and asthma in young adults,” Thorax, vol. 54, no. 5, pp. 396–402, 1999.
[34]  L. Y. Wang, F. J. Cerny, T. J. Kufel, and B. J. B. Grant, “Simulated obesity-related changes in lung volume increases airway responsiveness in lean, nonasthmatic subjects,” Chest, vol. 130, no. 3, pp. 834–840, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133