全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Incidental Intracranial Aneurysm in a Dog Detected by 16-Multidetector Row Computed Tomography Angiography

DOI: 10.1155/2013/932746

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes a small intracranial aneurysm incidentally found in a 24-month-old Nova Scotia Duck Tolling Retriever evaluated for a recent history of lethargy, fever, and cervical pain. The clinicopathological analysis revealed leukocytosis, and increased haptoglobin and C-reactive protein consistent with severe flogistic process. Nonenhanced computed tomography of the brain and cervical spine showed a diffuse encephalopathy and moderate cervical syringohydromyelia. Computed tomography angiography series of the brain showed a small saccular dilation at the joining point of the two rostral cerebral arteries consistent with a small aneurysm. Cerebrospinal fluid examination led to the final diagnosis of aseptic meningitis. The dog was discharge with a long-term corticosteroid therapy for the meningitis. At two-month follow-up evaluation, the cerebrospinal fluid examination was normal and the computed tomography of the brain showed no abnormalities except for the stable aneurysm. To our knowledge, this is the first description of a spontaneous cerebral aneurysm in dogs and serves to broaden the spectrum of cerebrovascular diseases in this species. 1. Introduction A brain aneurysm is an abnormal, outward pouching of the artery wall caused by a weakness in the wall of an artery that supplies the brain. In humans, the prevalence of this condition is about 5%. Approximately, 85% of aneurysms develop in the anterior portion of the circulation of the brain and are asymptomatic until they rupture [1–3]. Cerebral aneurysms are classified based on a number of features including etiology, size, shape, the association with the specific intracranial branch, or according to their angioarchitecture features [2, 4–6]. To date, very little is known concerning the type and incidence of variants and anomalies of the cerebrovascular system in dogs and cats [7–9]. Historically, few cases of cerebral hemorrhage in dogs were thought to be correlated to aneurysm, but their existence could not be proved [10]. To the authors knowledge, this is the first description of a spontaneous cerebral aneurysm in dogs. 2. Case Presentation A 24-month-old 22?kg intact male Nova Scotia Duck Tolling Retriever was evaluated for a recent history of lethargy, fever, and cervical pain. Medical history included another episode of cervical pain that has occurred one year before and rapidly improved with corticosteroid therapy for few days. At the time of presentation, the dog was receiving amoxicillin/clavulanic acid for 2 days (10?mg/kg PO q12). At physical examination, the dog showed

References

[1]  T. Krings, D. M. Mandell, T. R. Kiehl et al., “Intracranial aneurysms: from vessel wall pathology to therapeutic approach,” Nature Reviews Neurology, vol. 7, no. 10, pp. 547–559, 2011.
[2]  M. B. Pritz, “Cerebral aneurysm classification based on angioarchitecture,” Journal of Stroke and Cerebrovascular Diseases, vol. 20, no. 2, pp. 162–167, 2011.
[3]  I. Loumiotis, A. Wagenbach, R. D. Brown Jr., and G. Lanzino, “Small (? 10-mm) incidentally found intracranial aneurysms, part 1: reasons for detection, demographics, location, and risk factors in 212 consecutive patients,” Neurosurg Focus, vol. 31, no. 6, p. E3, 2011.
[4]  F. Bonneville, N. Sourour, and A. Biondi, “Intracranial aneurysms: an overview,” Neuroimaging Clinics of North America, vol. 16, no. 3, pp. 371–382, 2006.
[5]  M. A. Castro, C. M. Putman, M. J. Sheridan, and J. R. Cebral, “Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture,” American Journal of Neuroradiology, vol. 30, no. 2, pp. 297–302, 2009.
[6]  T. J. Grobelny, “Brain aneurysms: epidemiology, treatment options, and milestones of endovascular treatment evolution,” Disease-a-Month, vol. 57, no. 10, pp. 647–655, 2011.
[7]  K. Kapoor, V. K. Kak, and B. Singh, “Morphology and comparative anatomy of circulus arteriosus cerebri in mammals,” Anatomia, Histologia, Embryologia, vol. 32, no. 6, pp. 347–355, 2003.
[8]  W. R. Hause, M. L. Helphrey, R. W. Green, and P. C. Stromberg, “Cerebral arteriovenous malformation in a dog,” Journal of the American Animal Hospital Association, vol. 18, pp. 601–607, 1982.
[9]  W. B. Thomas, R. O. Scheuler, and J. N. Kornegay, “Surgical excision of a cerebral arteriovenous malformation in a dog,” Progress in Veterinary Neurology, vol. 6, pp. 20–23, 1995.
[10]  J. T. McGrath, Neurologic Examination of the Dog with Clinico-Pathologic Observations, Lea & Febiger, Philadelphia, Pa, USA, 2nd edition, 1960.
[11]  O. Shaller, Illustrated Veterinary Anatomic Nomenclature, Georg Thieme, 2nd edition, 2007.
[12]  A. F. van Raamt, W. P. Mali, P. J. van Laar, and Y. van der Graaf, “The fetal variant of the circle of Willis and its influence on the cerebral collateral circulation.,” Cerebrovascular Diseases, vol. 22, no. 4, pp. 217–224, 2006.
[13]  K. Kapoor, B. Singh, and L. I. J. Dewan, “Variations in the configuration of the circle of Willis,” Anatomical Science International, vol. 83, no. 2, pp. 96–106, 2008.
[14]  W. E. Stehbens, “Cerebral aneurysms of animals other than man,” The Journal of Pathology and Bacteriology, vol. 86, pp. 160–168, 1963.
[15]  R. Frankhauser, H. Luginbuhl, and J. T. McGrath, “Cerebrovascular disease in various animal species,” Annals of the New York Academy of Sciences, vol. 127, no. 1, pp. 817–860, 1965.
[16]  K. P. Anfinsen, M. Berendt, F. J. H. Liste et al., “A retrospective epidemiological study of clinical signs and familial predisposition associated with aseptic meningitis in the Norwegian population of Nova Scotia duck tolling retrievers born 1994–2003,” Canadian Journal of Veterinary Research, vol. 72, no. 4, pp. 350–355, 2008.
[17]  G. Bertolini and M. Caldin, “Computed tomography findings in portal vein aneurysm of dogs,” The Veterinary Journal, vol. 193, no. 2, pp. 475–480, 2012.
[18]  W. J. Henry, “Multiple aneurysm formation in a young man: a case report,” Annals of surgery, vol. 158, pp. 1043–1046, 1963.
[19]  Y. Ito, K. Tarao, S. Tamai et al., “Portal vein aneurysm in the liver associated with multiple vascular malformations,” Journal of Gastroenterology, vol. 29, no. 6, pp. 776–781, 1994.
[20]  K. R. Salmeri, J. R. Bellah, N. Ackerman, and B. Homer, “Unilateral congenital aneurysm of the jugular, linguofacial, and maxillary veins in a dog,” Journal of the American Veterinary Medical Association, vol. 198, no. 4, pp. 651–654, 1991.
[21]  M. Sager, J. Assheuer, H. Trümmler, and K. Moormann, “Contrast-enhanced magnetic resonance angiography (CE-MRA) of intra- and extra-cranial vessels in dogs,” Veterinary Journal, vol. 179, no. 1, pp. 92–100, 2009.
[22]  P. Martin-Vaquero, R. C. da Costa, R. L. Echandi, C. L. Tosti, M. V. Knopp, and S. Sammet, “Time-of-flight magnetic resonance angiography of the canine brain at 3.0 Tesla and 7.0 Tesla,” American Journal of Veterinary Research, vol. 72, no. 3, pp. 350–356, 2011.
[23]  A. S. Tidwell and I. D. Robertson, “Magnetic resonance imaging of normal and abnormal brain perfusion,” Veterinary Radiology and Ultrasound, vol. 52, no. 1, supplement 1, pp. S62–S71, 2011.
[24]  O. D. Jacqmot, F. R. Snaps, N. M. Maquet, M. P. Heinen, and A. E. Gabriel, “Arterial head vascularization cartographies of normal metencephalic dogs using magnetic resonance angiography,” The Anatomical Record, vol. 294, no. 11, pp. 1834–1841, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133