全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Single Lung Transplant in a Patient with Fabry Disease: Causality or Far-Fetched? A Case Report

DOI: 10.1155/2013/905743

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction. Fabry disease is a rare X-linked lysosomal storage disorder, characterized by an -galactosidase A deficiency resulting in globotriaosylceramide storage within cells. Subsequently, various organ systems are involved, clinically the most important are kidneys, the heart, and the peripheral and central nervous systems. Although obstructive lung disease is a common pathological finding in Fabry disease, pulmonary involvement is a clinically disregarded feature. Case Presentation. We report a patient with a diagnosis of chronic obstructive pulmonary disease (COPD) who received a single lung transplant in 2007. Later, a kidney biopsy revealed the diagnosis of Fabry disease, which was confirmed by enzymatic and genetic testing. Ultrastructural changes in a native lung biopsy were consistent with the diagnosis. Although the association of a lung transplant and Fabry disease appears far-fetched on first sight, respiratory impairment cannot be denied in Fabry disease. Conclusion. With this case presentation, we would like to stimulate discussion about rare differential diagnoses hidden beneath widespread disease and that a correct diagnosis is the base of an optimal treatment strategy for each patient. Overall, the patient might have benefited from specific enzyme replacement therapy, especially in view of the chronic kidney disease. 1. Introduction Fabry disease is a rare X-linked lysosomal storage disorder, characterized by an -galactosidase A deficiency resulting in globotriaosylceramide storage within cells. Subsequently, various organ systems are involved, clinically the most important are kidneys, the heart, and the peripheral and central nervous systems. However, each patient presents with a unique pattern of organ involvement, degree of clinical symptoms, and severity of organ damage [1]. Although obstructive lung disease, mainly of the small airway system, is a common pathological finding in Fabry disease [2–5], pulmonary involvement is not widely appreciated by clinicians. Respiratory symptoms may be falsely interpreted as arising from cardiac dysfunction [6], and lung failure due to Fabry disease has not been reported so far. In contrast to the respiratory system, patients with Fabry disease regularly develop organ failure predominantly involving kidneys and, less common, the heart. Renal transplantation has proven beneficial; however, recurrence of the disease in the transplant may occur [7]. Despite the fact that development of hypertrophic cardiomyopathy is considered a typical pathology and cardiac events are a leading cause of death

References

[1]  J. T. R. Clarke, “Narrative review: Fabry disease,” Annals of Internal Medicine, vol. 146, no. 6, pp. 425–433, 2007.
[2]  S. Magage, J. C. Lubanda, Z. Susa et al., “Natural history of the respiratory involvement in Anderson-Fabry disease,” Journal of Inherited Metabolic Disease, vol. 30, no. 5, pp. 790–799, 2007.
[3]  G. Bierer, N. Kamangar, D. Balte, W. R. Wilcox, and Z. Mosenifar, “Cardiopulmonary exercise testing in Fabry disease,” Respiration, vol. 72, no. 5, pp. 504–511, 2005.
[4]  L. K. Brown, A. Miller, A. Bhuptani et al., “Pulmonary involvement in Fabry disease,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 3, pp. 1004–1010, 1997.
[5]  J. W. Koskenvuo, I. M. Kantola, P. Nuutila et al., “Cardiopulmonary involvement in Fabry's disease,” Acta Cardiologica, vol. 65, no. 2, pp. 185–192, 2010.
[6]  A. Linhart, C. Kampmann, J. L. Zamorano et al., “Cardiac manifestations of Anderson-Fabry disease: results from the international Fabry outcome survey,” European Heart Journal, vol. 28, no. 10, pp. 1228–1235, 2007.
[7]  T. Shah, J. Gill, N. Malhotra, S. K. Takemoto, and S. Bunnapradist, “Kidney transplant outcomes in patients with Fabry disease,” Transplantation, vol. 87, no. 2, pp. 280–285, 2009.
[8]  A. Karras, P. De Lentdecker, M. Delahousse et al., “Combined heart and kidney transplantation in a patient with Fabry disease in the enzyme replacement therapy era,” American Journal of Transplantation, vol. 8, no. 6, pp. 1345–1348, 2008.
[9]  C. M. Eng, D. J. Niehaus, A. L. Enriquez, T. S. Burgert, M. D. Ludman, and R. J. Desnick, “Fabry disease: twenty-three mutations including sense and antisense CpG alterations and identification of a deletional hot-spot in the α-galactosidase A gene,” Human Molecular Genetics, vol. 3, no. 10, pp. 1795–1799, 1994.
[10]  D. P. Puliyanda, W. R. Wilcox, S. Bunnapradist, C. C. Nast, and S. C. Jordan, “Fabry disease in a renal allograft,” American Journal of Transplantation, vol. 3, no. 8, pp. 1030–1032, 2003.
[11]  N. Basic-Jukic, M. Coric, P. Kes, L. J. Bubic-Filipi, J. Pasini, and I. Mokos, “Anderson-Fabry disease in kidneys from deceased donor,” American Journal of Transplantation, vol. 7, no. 12, pp. 2829–2833, 2007.
[12]  A. Mehta, R. Ricci, U. Widmer et al., “Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey,” European Journal of Clinical Investigation, vol. 34, no. 3, pp. 236–242, 2004.
[13]  C. M. Eng, J. Fletcher, W. R. Wilcox et al., “Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry,” Journal of Inherited Metabolic Disease, vol. 30, no. 2, pp. 184–192, 2007.
[14]  M. Elleder, “Subcellular, cellular and organ pathology; 3.4.6. pathology of the lung,” in Fabry Disease, D. Elstein, G. Altarescu, and M. Beck, Eds., pp. 66–67, Springer, New York, NY, USA, 2010.
[15]  G. Bierer, D. Balfe, W. R. Wilcox, and Z. Mosenifar, “Improvement in serial cardiopulmonary exercise testing following enzyme replacement therapy in Fabry disease,” Journal of Inherited Metabolic Disease, vol. 29, no. 4, pp. 572–579, 2006.
[16]  A. Mehta, J. T. R. Clarke, R. Giugliani et al., “Natural course of Fabry disease: changing pattern of causes of death in FOS—Fabry Outcome Survey,” Journal of Medical Genetics, vol. 46, no. 8, pp. 548–552, 2009.
[17]  R. Y. Wang, J. T. Abe, A. H. Cohen, et al., “Enzyme replacement therapy stabilizes obstructive pulmonary Fabry disease associated with respiratory globotriaosylceramide storage,” Journal of Inherited Metabolic Disease, vol. 31, no. 2, supplement, pp. 369–374, 2008.
[18]  W. Kim, R. E. Pyeritz, B. A. Bernhardt, M. Casey, and H. I. Litt, “Pulmonary manifestations of Fabry disease and positive response to enzyme replacement therapy,” American Journal of Medical Genetics Part A, vol. 143, no. 4, pp. 377–381, 2007.
[19]  T. P. Mechtler, S. Stary, T. F. Metz, et al., “Neonatal screening for lysosomal storage disorders: feasibility and incidence from a nationwide study in Austria,” Lancet, vol. 379, no. 9813, pp. 335–341, 2012.
[20]  S. Ishii, H. Sakuraba, and Y. Suzuki, “Point mutations in the upstream region of the α-galactosidase A gene exon 6 in an atypical variant of Fabry disease,” Human Genetics, vol. 89, no. 1, pp. 29–32, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133