With the prevalence of an aging American population on the rise, osteoporotic vertebral fractures are becoming a common occurrence, resulting in an increase in vertebral augmentation procedures and associated complications such as cement leakage, vertebral compressions, and pulmonary embolism. We describe a patient who presented with respiratory distress three years following kyphoplasty of the lumbar vertebra. Computed tomography (CT) angiogram of the chest confirmed the presence of polymethylmethacrylate (PMMA) cement in the lung fields and pulmonary vessels. We conducted a systematic review of the published literature identifying effective management strategies for the treatment of vertebroplasty-associated pulmonary embolism. 1. Introduction Osteoporotic vertebral fractures are becoming increasingly common in the aging American population. Surgical vertebral augmentation procedures are gaining a high degree of importance and are soon becoming the standard of care to control pain and disability [1, 2]. The beneficial effects of these procedures to provide symptomatic pain relief in patients have been described in clinical trials [1, 2]. However, these augmentation procedures may carry complications involving cement leakage, which range from asymptomatic damage to surrounding tissues and nerves to systemic complications such as compressions and pulmonary embolism [1, 2]. To date, there is a lack of standard diagnostic and therapeutic measures for the management of pulmonary cement embolism. We recently had one such case. In addition, a literature review is presented. 2. Case Presentation An 82-year-old lady presented to the clinic with complaints of shortness of breath for several months. These symptoms had been worse at the beginning, but her dyspnea on exertion had improved over time. She had a history of osteoporotic vertebral fractures and had undergone kyphoplasty of lumbar vertebra (L4 and L5) three years prior. Blood pressure, hear rate, and respiratory rate were normal and her oxygen saturation was 100% while breathing room air. Her lungs were clear to auscultation and percussion. Cardiac examination was unremarkable as was the rest of her physical exam. A computed tomography (CT) angiogram of the chest revealed radioopaque densities, which were identified in the branch vessels of the pulmonary artery compatible with polymethylmethacrylate (PMMA) embolism (see Figures 1 and 2). She was managed conservatively with a follow-up CT scan three months later revealing no change in PMMA embolism. Figure 1: Computed tomography of chest without contrast
References
[1]
A. P. Amar, D. W. Larsen, N. Esnaashari, F. C. Albuquerque, S. D. Lavine, and G. P. Teitelbaum, “Percutaneous transpedicular polymethylmethacrylate vertebroplasty for the treatment of spinal compression fractures,” Neurosurgery, vol. 49, no. 5, pp. 1105–1115, 2001.
[2]
H. Deramond, C. Depriester, P. Galibert, and D. Le Gars, “Percutaneous vertebroplasty with polymethylmethacrylate: technique, indications, and results,” Radiologic Clinics of North America, vol. 36, no. 3, pp. 533–546, 1998.
[3]
M. Agko, M. Nazzal, T. Jamil, M. Castillo-Sang, P. Clark, and G. Kasper, “Prevention of cardiopulmonary embolization of polymethylmethacrylate cement fragment after kyphoplasty with insertion of inferior vena cava filter,” Journal of Vascular Surgery, vol. 51, no. 1, pp. 210–213, 2010.
[4]
A. Baumann, J. Tauss, G. Baumann, M. Tomka, M. Hessinger, and K. Tiesenhausen, “Cement embolization into the vena cava and pulmonal arteries after vertebroplasty: interdisciplinary management,” European Journal of Vascular and Endovascular Surgery, vol. 31, no. 5, pp. 558–561, 2006.
[5]
K. E. Radcliff, C. A. Reitman, L. A. Delasotta et al., “Pulmonary cement embolization after kyphoplasty: a case report and review of the literature,” The Spine Journal, vol. 10, no. 10, pp. e1–e5, 2010.
[6]
K. Y. Huang, J. J. Yan, and R. M. Lin, “Histopathologic findings of retrieved specimens of vertebroplasty with polymethylmethacrylate cement: case control study,” Spine, vol. 30, no. 19, pp. E585–E588, 2005.
[7]
Y. Chevalier, D. Pahr, M. Charlebois, P. Heini, E. Schneider, and P. Zysset, “Cement distribution, volume, and compliance in vertebroplasty: some answers from an anatomy-based nonlinear finite element study,” Spine, vol. 33, no. 16, pp. 1722–1730, 2008.
[8]
S. Molloy, J. M. Mathis, and S. M. Belkoff, “The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty,” Spine, vol. 28, no. 14, pp. 1549–1554, 2003.
[9]
J. Graham, C. Ahn, N. Hai, and B. D. Buch, “Effect of bone density on vertebral strength and stiffness after percutaneous vertebroplasty,” Spine, vol. 32, no. 18, pp. E505–E511, 2007.
[10]
J. Luo, M. A. Adams, and P. Dolan, “Vertebroplasty and kyphoplasty can restore normal spine mechanics following osteoporotic vertebral fracture,” Journal of Osteoporosis, vol. 2010, Article ID 729257, 9 pages, 2010.
[11]
D. H. Choe, E. M. Marom, K. Ahrar, M. T. Truong, and J. E. Madewell, “Pulmonary embolism of polymethyl methacrylate during percutaneous vertebroplasty and kyphoplasty,” The American Journal of Roentgenology, vol. 183, no. 4, pp. 1097–1102, 2004.
[12]
A. Krueger, C. Bliemel, R. Zettl, and S. Ruchholtz, “Management of pulmonary cement embolism after percutaneous vertebroplasty and kyphoplasty: a systematic review of the literature,” European Spine Journal, vol. 18, no. 9, pp. 1257–1265, 2009.
[13]
N. Habib, T. Maniatis, S. Ahmed et al., “Cement pulmonary embolism after percutaneous vertebroplasty and kyphoplasty: an overview,” Heart and Lung, vol. 41, no. 5, pp. 509–511, 2012.
[14]
H. L. Chen, C. S. Wong, S. T. Ho, F. Chang, C. Hsu, and C. Wu, “A lethal pulmonary embolism during percutaneous vertebroplasty,” Anesthesia and Analgesia, vol. 95, no. 4, pp. 1060–1062, 2002.
[15]
F. Monticelli, H. J. Meyer, and E. Tutsch-Bauer, “Fatal pulmonary cement embolism following percutaneous vertebroplasty (PVP),” Forensic Science International, vol. 149, no. 1, pp. 35–38, 2005.
[16]
K. Stricker, R. Orler, K. Yen, J. Takala, and M. Luginbühl, “Severe hypercapnia due to pulmonary embolism of polymethylinethacrylate during vertebroplasty,” Anesthesia and Analgesia, vol. 98, no. 4, pp. 1184–1186, 2004.
[17]
K. Y. Yoo, S. W. Jeong, W. Yoon, and J. Lee, “Acute respiratory distress syndrome associated with pulmonary cement embolism following percutaneous vertebroplasty with polymethylmethacrylate,” Spine, vol. 29, no. 14, pp. E294–E297, 2004.
[18]
D. Kollmann, K. Hoetzenecker, H. Prosch et al., “Removal of a large cement embolus from the right pulmonary artery 4 years after kyphoplasty: consideration of thrombogenicity,” Journal of Thoracic and Cardiovascular Surgery, vol. 143, no. 4, pp. e22–e24, 2012.