全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Rare Neurological Complication of Ranolazine

DOI: 10.1155/2013/451206

Full-Text   Cite this paper   Add to My Lib

Abstract:

Myoclonus is not a known side effect of ranolazine. We report a case of myoclonus in a 72-year-old female who underwent cardiac catheterization for angina and was started on ranolazine after the procedure. Two days after ranolazine therapy on 1000?mg per day in divided doses, myoclonus developed, which severely impaired her normal activity. Her symptoms resolved 2 days after discontinuation of ranolazine. Ranolazine was resumed after discharge from hospital with recurrent myoclonus after two days of therapy. The causal relationship between ranolazine and myoclonus was suggested by cessation of myoclonus after ranolazine was discontinued. 1. Introduction Chronic angina is a debilitating condition affecting nearly 6 million Americans. Current standard therapy includes beta-blockers, calcium channel blockers, and long acting nitrates. Some patients may be intolerable to standard therapy due to their side effects [1]. Ranolazine is new agent introduced into clinical practice in 2006. It is an extended release antianginal drug and is intended to act without reducing heart rate or blood pressure. Ranolazine is specifically indicated for the treatment of chronic angina in patients that failed previous anti-ischemic therapy [2]. It is contraindicated in patients with QT prolongation [3]. It has a piperazine compound that belongs to a group known as partial fatty-acid oxidation inhibitors [4]. Initially, the main anti-anginal effects of ranolazine were thought to be related to the actions of ranolazine to shift adenosine triphosphate (ATP) production away from fatty-acid oxidation toward glycolysis [5, 6]. Recent evidence suggests that ranolazine is an inhibitor of the late sodium current which results in a reduction of the intracellular sodium and calcium overload in ischemic cardiac myocytes [7–9]. 2. Case Report This is a 72-year-old female who presented to the emergency department with history of chest pain and non-ST-segment elevation myocardial infarction (NSTEMI). Her past medical history was significant for intermittent chest pain. She underwent cardiac catheterization with placement of 2 drug eluding stents and was started on ranolazine for symptomatic relief of NSTEM with angina. Her medication list included atorvastatin 20?mg daily, clopidogrel 75?mg daily, aspirin 162?mg daily, diltiazam 60?mg four times a day, and ranolazine 500?mg twice daily. She presented 2 days after discharge with myoclonic jerks in her upper and lower extremities. She was readmitted in the hospital for evaluation of myoclonus. At the time of her hospitalization, ranolazine was

References

[1]  B. R. Chaitman, “When should ranolazine be considered for the treatment of chronic angina?: commentary,” Nature Clinical Practice Cardiovascular Medicine, vol. 3, no. 11, pp. 590–591, 2006.
[2]  I. Bonadei, E. Vizzardi, F. Quinzani et al., “Effects of ranolazine on cardiovascular system,” Recent Patents on Cardiovascular Drug Discovery, vol. 6, no. 3, pp. 215–221, 2011.
[3]  G. Schram, L. Zhang, K. Derakhchan, J. R. Ehrlich, L. Belardinelli, and S. Nattel, “Ranolazine: ion-channel-blocking actions and in vivo electrophysiological effects,” British Journal of Pharmacology, vol. 142, no. 8, pp. 1300–1308, 2004.
[4]  W. C. Stanley, “Partial fatty acid oxidation inhibitors for stable angina,” Expert Opinion on Investigational Drugs, vol. 11, no. 5, pp. 615–629, 2002.
[5]  B. Clarke, K. M. Wyatt, and J. G. McCormack, “Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism,” Journal of Molecular and Cellular Cardiology, vol. 28, no. 2, pp. 341–350, 1996.
[6]  J. G. McCormack, W. C. Stanley, and A. A. Wolff, “Ranolazine: a novel metabolic modulator for the treatment of angina,” General Pharmacology, vol. 30, no. 5, pp. 639–645, 1998.
[7]  B. R. Chaitman, “Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions,” Circulation, vol. 113, no. 20, pp. 2462–2472, 2006.
[8]  C. Antzelevitch, L. Belardinelli, A. C. Zygmunt et al., “Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties,” Circulation, vol. 110, no. 8, pp. 904–910, 2004.
[9]  S. Sicouri, J. Blazek, L. Belardinelli, and C. Antzelevitch, “Electrophysiological characteristics of canine superior vena cava sleeve preparations: effect of ranolazine,” Circulation, vol. 5, no. 2, pp. 371–379, 2012.
[10]  M. Jerling, B.-L. Huan, K. Leung, N. Chu, H. Abdallah, and Z. Hussein, “Studies to investigate the pharmacokinetic interactions between ranolazine and ketoconazole, diltiazem, or simvastatin during combined administration in healthy subjects,” Journal of Clinical Pharmacology, vol. 45, no. 4, pp. 422–433, 2005.
[11]  H. Abdallah and M. Jerling, “Effect of hepatic impairment on the multiple-dose pharmacokinetics of ranolazine sustained-release tablets,” Journal of Clinical Pharmacology, vol. 45, no. 7, pp. 802–809, 2005.
[12]  M. Jerling, “Clinical pharmacokinetics of ranolazine,” Clinical Pharmacokinetics, vol. 45, no. 5, pp. 469–491, 2006.
[13]  M. Jerling and H. Abdallah, “Effect of renal impairment on multiple-dose pharmacokinetics of extended-release ranolazine,” Clinical Pharmacology and Therapeutics, vol. 78, no. 3, pp. 288–297, 2005.
[14]  R. Jones, “Ranolazine roche bioscience,” IDrugs, vol. 2, no. 12, pp. 1353–1362, 1999.
[15]  N. K. Wenger, B. Chaitman, and G. W. Vetrovec, “Gender comparison of efficacy and safety of ranolazine for chronic angina pectoris in four randomized clinical trials,” American Journal of Cardiology, vol. 99, no. 1, pp. 11–18, 2007.
[16]  M. J. Koren, M. R. Crager, and M. Sweeney, “Long-term safety of a novel antianginal agent in patients with severe chronic stable angina: the Ranolazine Open Label Experience (ROLE),” Journal of the American College of Cardiology, vol. 49, no. 10, pp. 1027–1034, 2007.
[17]  S. Rajamani, J. C. Shryock, and L. Belardinelli, “Block of tetrodotoxin-sensitive, NaV1.7 and tetrodotoxin-resistant, NaV1.8, Na+ channels by ranolazine,” Channels, vol. 2, no. 6, pp. 449–460, 2008.
[18]  B. W. Jarecki, A. D. Piekarz, J. O. Jackson II, and T. R. Cummins, “Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 369–378, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133