We report a girl with a de novo distal deletion of 9p affected by idiopathic central precocious puberty and intellectual disability. Genome-wide array-CGH revealed a terminal deletion of about 11?Mb, allowing to define her karyotype as 46; XX, del(9)(p23-pter). To our knowledge, this is the second reported case of precocious puberty associated with 9p distal deletion. A third case associates precocious puberty with a more proximal 9p deletion del(9)(p12p13,3). In our case, more than 40 genes were encompassed in the deleted region, among which, DMRT1 which is gonad-specific and has a sexually dimorphic expression pattern and ERMP1 which is required in rats for the organization of somatic cells and oocytes into discrete follicular structures. Although we cannot exclude that precocious puberty in our del(9p) patient is a coincidental finding, the report of the other two patients with 9p deletions and precocious puberty indeed suggests a causative relationship. 1. Introduction Central precocious puberty (CPP) is classically defined by the appearance of sexual secondary characteristics before the age of 8 years in girls and 9 years in boys [1]. It is caused by a premature activation of the hypothalamus-pituitary-gonadal axis. CPP may be either idiopathic or associated with occult intracranial lesion, mainly hypothalamic hamartoma or astrocytoma and noncancerous CNS disorders [2, 3]. This condition may cause early epiphyseal maturation with compromised final height as well as psychological stress [4, 5]. Chromosome 9p deletion syndrome (OMIM#158170) is a well-recognized entity, caused by a constitutional monosomy of a portion of 9p of different sizes in different patients. It was first described by Alfi et al. in 1973 [6]. Until now, approximately 180 cases have been published [7]. The most common features of monosomy 9p syndrome, as described by Swinkels et al. [8], include developmental and psychomotor delay, trigonocephaly, flat midface, short palpebral fissures, highly arched eyebrows, low-set ears, short flat nose with anteverted nostrils, thin upper lip, long philtrum, high palate, micrognathia, short neck, nipple hypertelorism, tapering fingers, flat feet, hypotonia, and developmental sex disorders in XY subjects. The critical region for a consensus phenotype has been reported to be located in a 300?Kb region on 9p22.3 [8]. Approximately half of the cases are due to de novo deletions of 9p, the remaining ones to unbalanced translocations with a derivative 9p chromosome. Few cases have been reported with 9p distal deletion concomitant to 9q distal
References
[1]
A. Rogol and R. M. Blizzard, “Variations and disorders of pubertal development,” in Wilkins' the Diagnosis and Treatment of Endocrine Disorders in Childhood and Adolescence, M. S. Kappy, R. M. Blizzard, and C. J. Migeon, Eds., pp. 857–917, Charles Thomas, Springfield, Ill, USA, 1994.
[2]
M. Cisternino, T. Arrigo, A. M. Pasquino et al., “Etiology and age incidence of precocious puberty in girls: a multicentric study,” Journal of Pediatric Endocrinology and Metabolism, vol. 13, supplement 1, pp. 695–701, 2000.
[3]
M. Chalumeau, C. G. Hadjiathanasiou, S. M. Ng et al., “Selecting girls with precocious puberty for brain imaging: validation of European evidence-based diagnosis rule,” Journal of Pediatrics, vol. 143, no. 4, pp. 445–450, 2003.
[4]
R. Brauner, L. Adan, F. Malandry, and D. Zantleifer, “Adult height in girls with idiopathic true precocious puberty,” Journal of Clinical Endocrinology and Metabolism, vol. 79, no. 2, pp. 415–420, 1994.
[5]
G. B. Kletter and R. P. Kelch, “Clinical review 60: Effects of gonadotropin-releasing hormone analog therapy on adult stature in precocious puberty,” Journal of Clinical Endocrinology and Metabolism, vol. 79, no. 2, pp. 331–334, 1994.
[6]
O. Alfi, G. N. Donnell, and B. F. Crandall, “Deletion of the short arm of chromosome # 9 (46,9p-). A new deletion syndrome,” Annales de Genetique, vol. 16, no. 1, pp. 17–22, 1973.
[7]
R. Onesimo, D. Orteschi, M. Scalzone et al., “Chromosome 9p deletion syndrome and sex reversal: novel findings and redefinition of the critically deleted regions,” American Journal of Medical Genetics A, vol. 158, no. 9, pp. 2266–2271, 2012.
[8]
M. E. M. Swinkels, A. Simons, D. F. Smeets et al., “Clinical and cytogenetic characterization of 13 Dutch patients with deletion 9p syndrome: delineation of the critical region for a consensus phenotype,” American Journal of Medical Genetics A, vol. 146, no. 11, pp. 1430–1438, 2008.
[9]
S. J. Funderburk, R. S. Sparkes, and I. Klisak, “The 9p- syndrome,” Journal of Medical Genetics, vol. 16, no. 1, pp. 75–79, 1979.
[10]
G. Eshel, E. Lahat, O. Reish, and J. Barr, “Neurodevelopmental and behavioral abnormalities associated with deletion of chromosome 9p,” Journal of Child Neurology, vol. 17, no. 1, pp. 50–51, 2002.
[11]
OMIM, “Online Mendelian Inheritance in Man,” http://www.omim.org/clinicalSynopsis/158170.
[12]
W. A. Marshall and J. M. Tanner, “Variations in pattern of pubertal changes in girls,” Archives of Disease in Childhood, vol. 44, no. 235, pp. 291–303, 1969.
[13]
W. W. Greulich and S. I. Pyle, Radiographic Atlas of Skeletal Development of the Hand and Wrist, Stanford University Press, Stanford, Calif, USA, 2nd edition, 1959.
[14]
N. Resta, R. Giorda, R. Bagnulo et al., “Breakpoint determination of 15 large deletions in Peutz-Jeghers subjects,” Human Genetics, vol. 128, no. 4, pp. 373–382, 2010.
[15]
J. L. Huret, C. Leonard, B. Forestier, M. O. Rethore, and J. Lejeune, “Eleven new cases of del(9p) and features from 80 cases,” Journal of Medical Genetics, vol. 25, no. 11, pp. 741–749, 1988.
[16]
D. W. Bianchi, “Chromosome 9, partial monosomy 9p,” in Birth Defects Encyclopedia, M. L. Buyse, Ed., pp. 353–354, Blackwell Scientific, Malden, Mass, USA, 1990.
[17]
K. S?rensen, L. Aksglaede, J. H. Petersen, A. M. Andersson, and A. Juul, “Serum IGF1 and insulin levels in girls with normal and precocious puberty,” European Journal of Endocrinology, vol. 166, no. 5, pp. 903–910, 2012.
[18]
M. Cisternino, A. Borghesi, L. Bacchella et al., “Increased insulin response to intravenous glucose tolerance test in girls with central precocious puberty,” Hormone Research, vol. 58, no. S2, p. 300, 2002.
[19]
A. D. Krentz, M. W. Murphy, A. L. Sarver, M. D. Griswold, V. J. Bardwell, and D. Zarkower, “DMRT1 promotes oogenesis by transcriptional activation of Stra8 in the mammalian fetal ovary,” Developmental Biology, vol. 356, no. 1, pp. 63–70, 2011.
[20]
C. Garcia-Rudaz, F. Luna, V. Tapia et al., “Fxna, a novel gene differentially expressed in the rat ovary at the time of folliculogenesis, is required for normal ovarian histogenesis,” Development, vol. 134, no. 5, pp. 945–957, 2007.
[21]
L. Mutesa, A. C. Hellin, M. Jamar, G. Pierquin, V. Bours, and A. Verloes, “Precocious puberty associated with partial trisomy 18q and monosomy 11q,” Genetic Counseling, vol. 18, no. 2, pp. 201–207, 2007.
[22]
K. Buiting, D. Kanber, J. I. Martín-Subero et al., “Clinical features of maternal uniparental disomy 14 in patients with an epimutation and a deletion of the imprinted DLK1/GTL2 gene cluster,” Human Mutation, vol. 29, no. 9, pp. 1141–1146, 2008.
[23]
H. Lyb?k, K. H. ?rstavik, T. Prescott et al., “An 8.9Mb 19p13 duplication associated with precocious puberty and a sporadic 3.9Mb 2q23.3q24.1 deletion containing NR4A2 in mentally retarded members of a family with an intrachromosomal 19p-into-19q between-arm insertion,” European Journal of Human Genetics, vol. 17, no. 7, pp. 904–910, 2009.
[24]
T. Kosho, S. Sakazume, H. Kawame et al., “De-novo balanced translocation between 7q31 and 10p14 in a girl with central precocious puberty, moderate mental retardation, and severe speech impairment,” Clinical Dysmorphology, vol. 17, no. 1, pp. 31–34, 2008.