全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Provisional Crown Dislodgement during Scuba Diving: A Case of Barotrauma

DOI: 10.1155/2013/749142

Full-Text   Cite this paper   Add to My Lib

Abstract:

Changes in ambient pressure, for example, during flying, diving, or hyperbaric oxygen therapy, can lead to barotrauma. Although it may seem that this issue was neglected in dental education and research in recent decades, familiarity with and understanding of these facts may be of importance for dental practitioners. We report the case of a patient who experienced barotrauma involving dislodgement of a provisional crown during scuba diving. Patients who are exposed to pressure changes as a part of their jobs or hobbies and their dentists should know the causes of barotrauma. In addition, the clinician must be aware of the possible influence of pressure changes on the retention of dental components. 1. Introduction In recent years it has become increasingly common to go to a tropical destination for a holiday [1]. There is often an opportunity to dive. Diving with self-contained underwater breathing apparatus (SCUBA) has witnessed explosive growth in the past decade, as 8.5 million people are certified in the United States alone. Around three million Europeans are thought to be recreational scuba divers, diving to depths up to around 40 meters sea water (msw). Additionally, there are approximately 800 professional civilians and 700 military divers registered in Germany as well as some 500 compressed air (caisson) workers, for example, for tunnel or bridge construction work [2]. With the increasing number of professional and leisure divers, the dentist may encounter related oral conditions that require immediate treatment. Although rare, dental emergencies while diving have been recognized as a potential cause of a diver suddenly becoming incapacitated, jeopardizing the safety of the affected person as well as others [3]. It is inevitable that the dental practitioner will have patients who participate in diving and they should be aware of a number of problems that a diver can experience that are associated with the teeth and related structures. An oral (dental or nondental) pain caused by change in barometric pressure in an otherwise asymptomatic organ is known as barodontalgia. The name of this dental pain was given the prefix “aero” (i.e., aerodontalgia) and was reported for the first time as an in-flight physiologic and pathologic phenomenon at the beginning of the 20th century. In the 1940s, with the appearance of SCUBA, many in-flight manifestations caused by barometric changes were found to be associated with diving as well. Consequently, the prefix was changed to “Baro” [4, 5]. Barodontalgia has been experienced on one or more occasions by 9.2% to

References

[1]  R. G. Jagger, S. J. Jackson, and D. C. Jagger, “In at the deep end—an insight into scuba diving and related dental problems for the GDP,” British Dental Journal, vol. 183, no. 10, pp. 380–382, 1997.
[2]  W. H. G. Goethe, H. B?ter, and C. Laban, “Barodontalgia and barotrauma in the human teeth: findings in navy divers, frogmen, and submariners of the Federal Republic of Germany,” Military Medicine, vol. 154, no. 10, pp. 491–495, 1989.
[3]  Y. Zadik, “Barodontalgia,” Journal of Endodontics, vol. 35, no. 4, pp. 481–485, 2009.
[4]  Y. Zadik, “Aviation dentistry: current concepts and practice,” British Dental Journal, vol. 206, no. 1, pp. 11–16, 2009.
[5]  R. Robichaud and M. E. McNally, “Barodontalgia as a differential diagnosis: symptoms and findings,” Journal of the Canadian Dental Association, vol. 71, no. 1, pp. 39–42, 2005.
[6]  Y. Zadik, “Barodontalgia: what have we learned in the past decade?” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 109, no. 4, pp. e65–e69, 2010.
[7]  Y. Zadik, S. Einy, R. Pokroy, Y. B. Dayan, and L. Goldstein, “Dental fractures on acute exposure to high altitude,” Aviation Space and Environmental Medicine, vol. 77, no. 6, pp. 654–657, 2006.
[8]  I. Peker, H. Erten, and G. Kayaoglu, “Dental restoration dislodgment and fracture during scuba diving: a case of barotrauma,” Journal of the American Dental Association, vol. 140, no. 9, pp. 1118–1121, 2009.
[9]  F. Musajo, P. Passi, G. B. Girardello, and F. Rusca, “The influence of environmental pressure on retentiveness of prosthetic crowns: an experimental study,” Quintessence International, vol. 23, no. 5, pp. 367–369, 1992.
[10]  M. T. Brandt, “Oral and maxillofacial aspects of diving medicine,” Military Medicine, vol. 169, no. 2, pp. 137–141, 2004.
[11]  A. D. Milutinovi?-Nikoli?, V. B. Medi?, and Z. M. Vukovi?, “Porosity of different dental luting cements,” Dental Materials, vol. 23, no. 6, pp. 674–678, 2007.
[12]  K. M. Lyons, J. C. Rodda, and J. A. A. Hood, “The effect of environmental pressure changes during diving on the retentive strength of different luting agents for full cast crowns,” Journal of Prosthetic Dentistry, vol. 78, no. 5, pp. 522–527, 1997.
[13]  C. L. Davidson, L. Van Zeghbroeck, and A. J. Feilzer, “Destructive stresses in adhesive luting cements,” Journal of Dental Research, vol. 70, no. 5, pp. 880–882, 1991.
[14]  M. N. Gulve, N. D. Gulve, R. Shinde, and S. J. Kolhe, “The effect of environmental pressure changes on the retentive strength of cements for orthodontic bands,” Diving and Hyperbaric Medicine, vol. 42, no. 2, pp. 78–81, 2012.
[15]  M. Stoetzer, C. Kuehlhorn, M. Ruecker, D. Ziebolz, N. C. Gellrich, and C. V. See, “Pathophysiology of barodontalgia: a case report and review of the literature,” Case Report in Dentistry, vol. 2012, Article ID 453415, 4 pages, 2012.
[16]  Y. Zadik, “Dental barotrauma,” The International Journal of Prosthodontics, vol. 22, no. 4, pp. 354–357, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133