The case reports present the endodontic management of two maxillary first molars with six canals. The diagnosis of morphology of multiple canal systems was identified under magnification of the dental operating microscope and was confirmed with the help of cone beam computed tomography. This paper discusses the variations in the canal morphology and the use of the latest adjuncts in successfully diagnosing and treating unusual canal anatomy. 1. Introduction A thorough knowledge of the root canal anatomy, its variations, the presence of additional roots, and unusual root canal morphology is essential, as it determines the successful outcome of endodontic treatment [1]. To ensure the long-term success of root canal treatment, it is essential to access, clean, and fill all of the canal spaces. However, the anatomic complexities and variations are constant challenges for successful endodontic therapy [2]. The morphology of the maxillary first molar has been extensively studied and reported in the literature. Traditionally the maxillary first molar exhibits three roots and three canals. The occurrence of a fourth canal ranges from 50.4% to 95% [3–7] and a fifth canal 2.25% [8], and a few authors have also reported cases with 6 canals [9, 10]. The occurrence of 2 canals in distobuccal root has been less frequent and has been reported in 3.6% of maxillary molars [4, 10, 11]. Palatine root canal variations were well established by Christie et al. [8, 12], who reported the endodontic treatment of maxillary molars with 2 palatine roots and classified these teeth as types I, II, and III, according to root degree of divergence. Others reported cases of maxillary first molar with two canals in each of the three roots [9, 10, 13–15]. The present cases report the successful management of maxillary first molars with three roots and six canals. The clinical findings were confirmed with the help of operating microscope and cone beam computed tomography (CBCT). 2. Case Report 1 A 43-year-old female patient presented with the chief complaint of pain in the left upper back tooth. The pain was continuous and aggravated on heat stimulation. The patient also complained of pain at night. The patient’s medical history was noncontributory. Clinical examination revealed the left maxillary first molar with a deep carious lesion which was tender on percussion. Electric pulp testing gave a premature response, indicative of inflammatory pulpal changes. The radiographic examination revealed a radiolucent lesion on the mesial aspect of the crown extending to the pulp (Figure 1(a)).
References
[1]
V. Malagnino, L. Gallottini, and P. Passariello, “Some unusual clinical cases on root anatomy of permanent maxillary molars,” Journal of Endodontics, vol. 23, no. 2, pp. 127–128, 1997.
[2]
O. A. Peters, “Current challenges and concepts in the preparation of root canal systems: a review,” Journal of Endodontics, vol. 30, no. 8, pp. 559–567, 2004.
[3]
F. Baratto Filho, S. Zaitter, G. A. Haragushiku, E. A. de Campos, A. Abuabara, and G. M. Correr, “Analysis of the internal anatomy of maxillary first molars by using different methods,” Journal of Endodontics, vol. 35, no. 3, pp. 337–342, 2009.
[4]
B. M. Cleghorn, W. H. Christie, and C. C. S. Dong, “Root and root canal morphology of the human permanent maxillary first molar: a literature review,” Journal of Endodontics, vol. 32, no. 9, pp. 813–821, 2006.
[5]
R. P. Thomas, A. J. Moule, and R. Bryant, “Root canal morphology of maxillary permanent first molar teeth at various ages,” International Endodontic Journal, vol. 26, no. 5, pp. 257–267, 1993.
[6]
J. C. Kulid and D. D. Peters, “Incidence and configuration of canal systems in the mesiobuccal root of Maxillary first and second molars,” Journal of Endodontics, vol. 16, no. 7, pp. 311–317, 1990.
[7]
G. Hartwell, C. M. Appelstein, W. W. Lyons, and M. E. Guzek, “The incidence of four canals in maxillary first molars—a clinical determination,” Journal of the American Dental Association, vol. 138, no. 10, pp. 1344–1346, 2007.
[8]
H. M. Fogel, M. D. Peikoff, and W. H. Christie, “Canal configuration in the mesiobuccal root of the maxillary first molar: a clinical study,” Journal of Endodontics, vol. 20, no. 3, pp. 135–137, 1994.
[9]
A. Martínez-Berná and P. Ruiz-Badanelli, “Maxillary first molars with six canals,” Journal of Endodontics, vol. 9, no. 9, pp. 375–381, 1983.
[10]
J. L. Bond, G. Hartwell, and F. R. Portell, “Maxillary first molar with six canals,” Journal of Endodontics, vol. 14, no. 5, pp. 258–260, 1988.
[11]
L. H. Stone and W. F. Stroner, “Maxillary molars demonstrating more than one palatal root canal,” Oral Surgery Oral Medicine and Oral Pathology, vol. 51, no. 6, pp. 649–652, 1981.
[12]
W. H. Christie, M. D. Peikoff, and H. M. Fogel, “Maxillary molars with two palatal roots: a retrospective clinical study,” Journal of Endodontics, vol. 17, no. 2, pp. 80–84, 1991.
[13]
E. J. Neaverth, L. M. Kotler, and R. F. Kaltenbach, “Clinical investigation (In Vivo) of endodontically treated maxillary first molars,” Journal of Endodontics, vol. 13, no. 10, pp. 506–512, 1987.
[14]
Y.-Y. Lee, P.-Y. Yeh, S.-F. Pai, and S.-F. Yang, “Maxillary first molar with six canals,” Journal of Dental Sciences, vol. 4, no. 4, pp. 198–201, 2009.
[15]
K. Karthikeyan and S. Mahalaxmi, “New nomenclature for extra canals based on four reported cases of maxillary first molars with six canals,” Journal of Endodontics, vol. 36, no. 6, pp. 1073–1078, 2010.
[16]
J. Kottoor, N. Velmurugan, R. Sudha, and S. Hemamalathi, “Maxillary first molar with seven root canals diagnosed with cone-beam computed tomography scanning: a case report,” Journal of Endodontics, vol. 36, no. 5, pp. 915–921, 2010.
[17]
F. J. Vertucci, “Root canal morphology and its relationship to endodontic procedures,” Endodontic Topics, vol. 10, pp. 3–29, 2005.
[18]
L. A. Baldassari-Cruz, J. P. Lilly, and E. M. Rivera, “The influence of dental operating microscope in locating the mesiolingual canal orifice,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 93, no. 2, pp. 190–194, 2002.
[19]
M. C. Coelho De Carvalho and M. L. Zuolo, “Orifice locating with a microscope,” Journal of Endodontics, vol. 26, no. 9, pp. 532–534, 2000.
[20]
T. Schwarze, C. Baethge, T. Stecher, and W. Geurtsen, “Identification of second canals in the mesiobuccal root of maxillary first and second molars using magnifying loupes or an operating microscope,” Australian Endodontic Journal, vol. 28, no. 2, pp. 57–60, 2002.
[21]
S. Patel, A. Dawood, E. Whaites, and T. Pitt Ford, “New dimensions in endodontic imaging: part 1. Conventional and alternative radiographic systems,” International Endodontic Journal, vol. 42, no. 6, pp. 447–462, 2009.
[22]
M. K. Nair and U. P. Nair, “Digital and advanced imaging in endodontics: a review,” Journal of Endodontics, vol. 33, no. 1, pp. 1–6, 2007.
[23]
S. Patel, “New dimensions in endodontic imaging: part 2. Cone beam computed tomography,” International Endodontic Journal, vol. 42, no. 6, pp. 463–475, 2009.
[24]
T. P. Cotton, T. M. Geisler, D. T. Holden, S. A. Schwartz, and W. G. Schindler, “Endodontic applications of cone-beam volumetric tomography,” Journal of Endodontics, vol. 33, no. 9, pp. 1121–1132, 2007.
[25]
D. A. Tyndall and S. Rathore, “Cone-beam CT diagnostic applications: caries, periodontal bone assessment, and endodontic applications,” Dental Clinics of North America, vol. 52, no. 4, pp. 825–841, 2008.
[26]
C. G. Diederichs, W. G. H. Engelke, B. Richter, K.-P. Hermann, and J. W. Oestmann, “Must radiation dose for CT of the maxilla and mandible be higher than that for conventional panoramic radiography?” American Journal of Neuroradiology, vol. 17, no. 9, pp. 1758–1760, 1996.
[27]
S. Sert and G. S. Bayirli, “Evaluation of the root canal configurations of the mandibular and maxillary permanent teeth by gender in the Turkish population,” Journal of Endodontics, vol. 30, no. 6, pp. 391–398, 2004.