KID syndrome is a rare genodermatosis characterized by keratitis, ichthyosis, and sensorineural deafness. Although the dermatological, ophthalmologic, and sensorineural defects are emphasized in the literature, oral and dental evaluations are so superficial. In this case report, dental and oral symptoms of a three year and five months old boy with KID syndrome, suffering severe Early Childhood Caries (s-ECC) and dental treatments done under General Anesthesia (GA) were reported. 1. Introduction Keratitis-ichthyosis-deafness (KID) syndrome is congenital ectodermal disorder without a clear mode of inheritance and is characterized by erythrokeratoderma, sensorineural hearing loss, and vascularizing keratitis [1–5]. KID syndrome is usually associated with less severe keratoderma and a milder hearing problem, but the eye involvement (keratitis) may eventually lead to impaired vision [3]. Keratitis is rather a late finding and may not sometimes be seen [6]. The cause of KID syndrome was identified as a germline missense mutation in the GJB2 (gap junctionβ-2) gene encoding for connexin-26, which is essential for gap function formation in various tissues [7, 8]. Mutations in the GJB2 gene encoding connexin 26 are detrimental to function of cochlea, palmoplantar epidermis, hair follicles, corneal epithelium, and sweat glands and ducts, causing nonsyndromic sensorineural deafness, palmoplantar keratoderma and hearing impairment, Vohwinkel syndrome, and KID syndrome [8–11]. The first component required for diagnosis is characteristic skin findings which are usually present at birth or in early infancy. The well-demarcated, erythematous, hyperkeratotic plaques with verrucous surface are distributed over face and extremities alternating with smoother areas [3]. Hyperkeratotic plaques over the face give patients an appearance of premature aging [12]. The second one is presence of sensorineural hearing loss. The third component is ophthalmologic defects, which can progress total blindness [13]. Most patients have sparse or absent scalp hair, eyebrows, and eyelashes [3]. Nails may be thickened, deformed, brittle, white, hypoplastic, or normal. In some patients teeth are normally developed, but in others they may be defective and they are likely to develop caries [3, 14–17]. However, oral mucosa, status of the primary teeth and development of permanent teeth of the children with KID syndrome, and treatment approaches for those children have not been investigated so far. Here, we report the dental restorative treatments provided for a three-year and five-month-old
References
[1]
B. A. Skinner, M. C. Greist, and A. L. Norins, “The keratitis, ichthyosis, and deafness (KID) syndrome,” Archives of Dermatology, vol. 117, no. 5, pp. 285–289, 1981.
[2]
F. S. Burns, “A case of generalized congenital erythroderma,” Journal of Cutaneous Diseases, vol. 33, pp. 255–260, 1915.
[3]
H. Caceres-Rios, L. Tamayo-Sanchez, C. Duran-Mckinster, M. De La Luz Orozco, and R. Ruiz-Maldonado, “Keratitis, ichthyosis, and deafness (KID syndrome): review of the literature and proposal of a new terminology,” Pediatric Dermatology, vol. 13, no. 2, pp. 105–113, 1996.
[4]
C.-Y. Yang, Y.-J. Chen, and J.-L. Shen, “Keratitis, ichthyosis and deafness syndrome—a case report and literature review,” Dermatologica Sinica, vol. 26, no. 3, pp. 151–156, 2008.
[5]
G. ülker, A. K?l??, M. G?nül, S. Külcü ?akmak, and T. ünal, “A case with KID Syndrome: keratitis-ichthyosis-deafness,” Turkiye Klinikleri Journal of Dermatology, vol. 19, no. 2, pp. 104–106, 2009.
[6]
E. M. Messmer, K. R. Kenyon, O. Rittinger, A. R. Janecke, and A. Kampik, “Ocular manifestations of keratitis-ichthyosis-deafness (KID) syndrome,” Ophthalmology, vol. 112, no. 2, pp. e1–e6, 2005.
[7]
A. B. Carey, W. A. Burke, and H. M. Park, “Malignant fibrous histiocytoma in keratosis, ichthyosis, and deafness syndrome,” Journal of the American Academy of Dermatology, vol. 19, no. 6, pp. 1124–1126, 1988.
[8]
S. Yotsumoto, T. Hashiguchi, X. Chen et al., “Novel mutations in GJB2 encoding connexin-26 in Japanese patients with keratitis-ichthyosis-deafness syndrome,” British Journal of Dermatology, vol. 148, no. 4, pp. 649–653, 2003.
[9]
L. Miteva, “Keratitis, ichthyosis, and deafness (KID) syndrome,” Pediatric Dermatology, vol. 19, no. 6, pp. 513–516, 2002.
[10]
W. Jurecka, E. Aberer, M. Mainitz, and O. Jurgensen, “Keratitis, ichthyosis, and deafness syndrome with glycogen storage,” Archives of Dermatology, vol. 121, no. 6, pp. 799–801, 1985.
[11]
L.-G. Chia and W.-M. Li, “Clinical and electrophysiological studies in a patient with keratitis, ichthyosis and deafness (KID) syndrome,” Journal of Neurogenetics, vol. 4, no. 1, pp. 57–64, 1987.
[12]
K. Langer, K. Konrad, and K. Wolff, “Keratitis, ichthyosis and deafness (KID)-syndrome: report of three cases and a review of the literature,” British Journal of Dermatology, vol. 122, no. 5, pp. 689–697, 1990.
[13]
S. Sonoda, E. Uchino, K.-H. Sonoda et al., “Two patients with severe corneal disease in KID syndrome,” American Journal of Ophthalmology, vol. 137, no. 1, pp. 181–183, 2004.
[14]
S. M. Elsayed, N. S. Seifeldeen, and H. Bolz, “Connexin 26 (GJB2) mutation in KID syndrome: an Egyptian patient,” The Egyptian Journal of Medical Human Genetics, vol. 12, pp. 91–93, 2011.
[15]
X.-B. Zhang, S.-C. Wei, C.-X. Li et al., “Mutation of GJB2 in a Chinese patient with keratitis-ichthyosis-deafness syndrome and brain malformation,” Clinical and Experimental Dermatology, vol. 34, no. 3, pp. 309–313, 2009.
[16]
S. Criton and J. Vincent, “Keratitis, ichthyosis and deafness (KID) syndrome,” Indian Journal of Dermatology, Venereology and Leprology, vol. 61, no. 5, pp. 312–313, 1995.
[17]
M.-L. Bondeson, A.-M. Nystr?m, U. Gunnarsson, and A. Vahlquist, “Connexin 26 (GJB2) mutations in two Swedish patients with atypical Vohwinkel (mutilating keratoderma plus deafness) and KID syndrome both extensively treated with acitretin,” Acta Dermato-Venereologica, vol. 86, no. 6, pp. 503–508, 2006.
[18]
American Academy of Pediatric Dentistry Guidelines, “Policy on early childhood caries (ECC): classifications, consequences, and preventive strategies,” Oral Health Policies, and Clinical Guidelines, pp. 47–49, 2012.
[19]
C. Roberts, J. Y. Lee, and J. T. Wright, “Clinical evaluation of and parental satisfaction with resin-faced stainless steel crowns,” Pediatric Dentistry, vol. 23, no. 1, pp. 28–31, 2001.
[20]
M. E. Gonzalez, B. E. Tlougan, H. N. Price, R. Patel, H. Kamino, and J. V. Schaffer, “Keratitis-ichthyosis-deafness (KID) syndrome,” Dermatology Online Journal, vol. 15, no. 8, article 11, 2009.
[21]
A. J. Kanwar, S. Ghosh, S. Handa, G. P. Thami, and S. Kaur, “Keratitis, ichthyosis, deafness (KID) syndrome—the first report from India,” Clinical and Experimental Dermatology, vol. 18, no. 4, pp. 386–388, 1993.
[22]
A. Abdollahi, Z. Hallaji, N. Esmaili et al., “KID syndrome,” Dermatology Online Journal, vol. 13, no. 4, article 11, 2007.
[23]
A. Y. Jan, S. Amin, P. Ratajczak, G. Richard, and V. P. Sybert, “Genetic heterogeneity of KID syndrome: identification of a Cx30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia,” Journal of Investigative Dermatology, vol. 122, no. 5, pp. 1108–1113, 2004.
[24]
J. Mazereeuw-Hautier, E. Bitoun, J. Chevrant-Breton et al., “Keratitis-ichthyosis-deafness syndrome: disease expression and spectrum of connexin 26 (GJB2) mutations in 14 patients,” British Journal of Dermatology, vol. 156, no. 5, pp. 1015–1019, 2007.
[25]
K. Tuppurainen, J. Fraki, S. Karjalainen, L. Paljarvi, R. Suhonen, and M. Ryynanen, “The KID-syndrome in Finland. A report of four cases,” Acta Ophthalmologica, vol. 66, no. 6, pp. 692–698, 1988.
[26]
V. Shanker, M. Gupta, and A. Prashar, “Keratitis-ichthyosis-deafness syndrome: a rare congenital disorder,” Indian Dermatol Online Journal, vol. 3, no. 1, pp. 48–50, 2012.
[27]
D. Watanabe, M. Zako, Y. Tamada, and Y. Matsumoto, “A case of keratitis-ichthyosis-deafness (KID) syndrome,” International Journal of Dermatology, vol. 46, no. 4, pp. 400–402, 2007.
[28]
H. C. Dietz, “Marfan syndrome,” in GeneReviews, R. A. Pagon, T. D. Bird, C. R. Dolan, et al., Eds., University of Washington, Seattle, Wash, USA, 1993.
[29]
J. E. Allanson and A. E. Robers, “Noonan syndrome,” in GeneReviews, R. A. Pagon, T. D. Bird, C. R. Dolan, et al., Eds., University of Washington, Seattle, Wash, USA, 1993.
[30]
A. LoMauro, S. Pochintesta, M. Romei et al., “Rib cage deformities alter respiratory muscle action and chest wall function in patients with severe Osteogenesis Imperfecta,” PLoS ONE, vol. 7, no. 4, Article ID e35965, 2012.
[31]
M. T. Greally, “Shprintzen-goldberg syndrome,” in GeneReviews, R. A. Pagon, T. D. Bird, C. R. Dolan, et al., Eds., University of Washington, Seattle, Wash, USA, 1993.
[32]
B. L. Loeys and H. C. Dietz, “Loeys-dietz syndrome,” in GeneReviews, R. A. Pagon, T. D. Bird, C. R. Dolan, et al., Eds., University of Washington, Seattle, Wash, USA, 1993.
[33]
Z. H. Zaidi, “Ehlers-Danlos syndrome with congenital herniae and pigeon breast,” British Medical Journal, vol. 2, no. 5145, pp. 175–176, 1959.
[34]
M. de Souza Coelho and P. S. F. de Guimar?es, “Pectus carinatum,” Jornal Brasileiro de Pneumologia, vol. 33, no. 4, pp. 463–474, 2007.
[35]
J. S. Rathbone and J. C. Snidecor, “Appraisal of speech defects in dental anomalies with reference to speech improvement,” The Angle Orthodontist, vol. 29, no. 1, pp. 54–59, 1959.
[36]
O. F. Khabour, F. S. Mesmar, F. Al-Tamimi, O. B. Al-Batayneh, and A. I. Owais, “Missense mutation of the EDA gene in a Jordanian family with X-linked hypohidrotic ectodermal dysplasia: phenotypic appearance and speech problems,” Genetics and Molecular Research, vol. 9, no. 2, pp. 941–948, 2010.
[37]
E. Ventura, E. Levy, M. Friedman, and H. Gat, “General anesthesia for complete oral rehabilitation in children,” ASDC Journal of Dentistry for Children, vol. 48, no. 1, pp. 33–35, 1981.