全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
VLSI Design  2013 

Discrete Wavelet Transform on Color Picture Interpolation of Digital Still Camera

DOI: 10.1155/2013/738057

Full-Text   Cite this paper   Add to My Lib

Abstract:

Many people use digital still cameras to take photographs in contemporary society. Significant amounts of digital information have led to the emergence of a digital era. Because of the small size and low cost of the product hardware, most image sensors use a color filter array to obtain image information. However, employing a color filter array results in the loss of image information; thus, a color interpolation technique must be employed to retrieve the original picture. Numerous researchers have developed interpolation algorithms in response to various image problems. The method proposed in this study involves integrating discrete wavelet transform (DWT) into the interpolation algorithm. The method was developed based on edge weight and partial gain characteristics and uses the basic wavelet function to enhance the edge performance and processes of the nearest or larger and smaller direction gradients. The experiment results were compared to those of other methods to verify that the proposed method can improve image quality. 1. Introduction The basic principles of digital still cameras and traditional cameras are analogous. Traditional cameras use sensitization negatives to sense the input image. Digital still cameras project the input image onto a charge-coupled device (CCD), where it is transformed into a digital signal. The digital signal is then stored in a memory component after compression. However, this signal indicates the light intensity and not the color variation. Therefore, a color filter array must be employed for digital sampling. Color filter arrays typically employ the RGB original color separation technique, where red, green, and blue values are mixed into a complete color image after the original image is passed through three color filter arrays. Because of the high costs and large space required to use three color filter arrays with CCDs, only one color filter array with a CCD is employed. Consequently, each pixel possesses only one red, green, and blue color elements. The general color filter array in digital still cameras possesses a Bayer pattern [1], as shown in Figure 1. An interpolation algorithm must be employed to identify the two missing colors based on the surrounding pixels. The zipper effect or false colors are typically observed in images after interpolation. Numerous interpolation algorithms have been proposed to resolve these problems and obtain good image quality. Figure 1: Bayer pattern color filter array. Image interpolation methods possess spatial and frequency characteristics. Edge direction and nonedge

References

[1]  B. E. Bayer, “Color imaging array,” U.S. Patent 3 971 065, 1976.
[2]  T. Sakamoto, C. Nakanishi, and T. Hase, “Software pixel interpolation for digital still cameras suitable for a 32-bit MCU,” IEEE Transactions on Consumer Electronics, vol. 44, no. 4, pp. 1342–1352, 1998.
[3]  S. C. Pei and I. K. Tam, “Effective color interpolation in CCD color filter arrays using signal correlation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 6, pp. 503–513, 2003.
[4]  J. E. Adams Jr., “Design of practical color filter array interpolation algorithms for digital cameras,” in 2nd Real-Time Imaging, vol. 3028 of Proceedings of SPIE, pp. 117–125, February 1997.
[5]  R. Lukac, K. N. Plataniotis, D. Hatzinakos, and M. Aleksic, “A new CFA interpolation framework,” Signal Processing, vol. 86, no. 7, pp. 1559–1579, 2006.
[6]  B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” IEEE Transactions on Image Processing, vol. 11, no. 9, pp. 997–1013, 2002.
[7]  E. Dubois, “Frequency-domain methods for demosaicking of bayer-sampled color images,” IEEE Signal Processing Letters, vol. 12, no. 12, pp. 847–850, 2005.
[8]  B. G. Jeong, S. H. Hyun, and I. K. Eom, “Edge adaptive demosaicking in wavelet domain,” in Proceedings of the 9th International Conference on Signal Processing (ICSP'08), pp. 836–839, Beijing, China, October 2008.
[9]  L. Chen, K. H. Yap, and Y. He, “Color filter array demosaicking using wavelet-based subband synthesis,” in Proceedings of the IEEE International Conference on Image Processing (ICIP'05), pp. II-1002–II-1005, September 2005.
[10]  J. Driesen and P. Scheunders, “Wavelet-based color filter array demosaicking,” in Proceedings of the International Conference on Image Processing (ICIP'04), vol. 5, pp. 3311–3314, October 2004.
[11]  X. Wu and X. Zhang, “Joint color decrosstalk and demosaicking for CFA cameras,” IEEE Transactions on Image Processing, vol. 19, no. 12, pp. 3181–3189, 2010.
[12]  K. H. Chung and Y. H. Chan, “Color demosaicing using variance of color differences,” IEEE Transactions on Image Processing, vol. 15, no. 10, pp. 2944–2955, 2006.
[13]  K. L. Chung, W. J. Yang, W. M. Yan, and C. C. Wang, “Demosaicing of color filter array captured images using gradient edge detection masks and adaptive heterogeneity-projection,” IEEE Transactions on Image Processing, vol. 17, no. 12, pp. 2356–2367, 2008.
[14]  K. L. Chung, W. J. Yang, P. Y. Chen, W. M. Yan, and C. S. Fuh, “New joint demosaicing and zooming algorithm for color filter array,” IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1477–1486, 2009.
[15]  N. X. Lian, L. Chang, Y. P. Tan, and V. Zagorodnov, “Adaptive filtering for color filter array demosaicking,” IEEE Transactions on Image Processing, vol. 16, no. 10, pp. 2515–2525, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133