Uncontrolled or impaired immune and inflammatory responses in periparturient dairy cows are associated with increased incidence and severity of infectious diseases. The progressive development of oxidative stress during the transition from late gestation to peak lactation is thought to be a significant underlying factor leading to dysfunctional immune cell responses. Certain trace minerals, such as selenium (Se), can ameliorate oxidative stress and reduce the severity of several economically important diseases in dairy cattle including mastitis and metritis. Many of the health benefits of Se can be attributed to the antioxidant functions of selenoproteins. Changes in selenoprotein activity as a consequence of Se nutritional status can directly alter a number of critical cellular functions involved in the inflammatory response. A better understanding of how Se can optimize immune cell responses may facilitate the design of nutritional regimes that will reduce health disorders during the periparturient period. 1. Introduction Dairy cattle have an increased susceptibility to infectious diseases during the periparturient period [1]. A major contributing factor to increased health disorders is thought to be due to dysfunctional bovine immune responses [2, 3]. Indeed, uncontrolled or impaired inflammatory responses are a major contributing factor to several economically important diseases including metritis, laminitis, and mastitis [4]. Increased health problems around the time of calving are especially problematic because they may greatly impact the productive efficiency of dairy cattle in the ensuing lactation. Therefore, it is not surprising that considerable research efforts have focused on defining factors that may contribute to immune dysfunction during this critical period in the production cycle of dairy cows [4–6]. The progressive development of oxidative stress in transition dairy cattle is thought to be a significant underlying factor leading to dysfunctional inflammatory responses [6, 7]. Certain trace minerals, such as Se, can be effective in reducing oxidative stress and the severity of several proinflammatory-based dairy cattle diseases such as mastitis and metritis [6, 8]. Many of the antioxidant functions of Se are mediated through the reducing capacity of selenoproteins including the glutathione peroxidase (GPX) and thioredoxin reductase (TrxR) families. Selenoproteins also can regulate intercellular signaling pathways that orchestrate the expression of mediators that serve to optimize the inflammatory response and restore immune
References
[1]
J. P. Goff, “Major advances in our understanding of nutritional influences on bovine health,” Journal of Dairy Science, vol. 89, no. 4, pp. 1292–1301, 2006.
[2]
M. E. Kehrli Jr., B. J. Nonnecke, and J. A. Roth, “Alterations in bovine lymphocyte function during the periparturient period,” American Journal of Veterinary Research, vol. 50, no. 2, pp. 215–220, 1989.
[3]
M. E. Kehrli Jr., B. J. Nonnecke, and J. A. Roth, “Alterations in bovine neutrophil function during the periparturient period,” American Journal of Veterinary Research, vol. 50, no. 2, pp. 207–214, 1989.
[4]
L. M. Sordillo, G. A. Contreras, and S. L. Aitken, “Metabolic factors affecting the inflammatory response of periparturient dairy cows,” Animal Health Research Reviews, vol. 10, no. 1, pp. 53–63, 2009.
[5]
S. L. Aitken, C. M. Corl, and L. M. Sordillo, “Immunopathology of mastitis: insights into disease recognition and resolution,” Journal of Mammary Gland Biology and Neoplasia, vol. 16, no. 4, pp. 291–304, 2011.
[6]
L. M. Sordillo and S. L. Aitken, “Impact of oxidative stress on the health and immune function of dairy cattle,” Veterinary Immunology and Immunopathology, vol. 128, no. 1–3, pp. 104–109, 2009.
[7]
J. K. Miller, E. Brzezinska-Slebodzinska, and F. C. Madsen, “Oxidative stress, antioxidants, and animal function,” Journal of Dairy Science, vol. 76, no. 9, pp. 2812–2823, 1993.
[8]
J. W. Spears and W. P. Weiss, “Role of antioxidants and trace elements in health and immunity of transition dairy cows,” Veterinary Journal, vol. 176, no. 1, pp. 70–76, 2008.
[9]
J. D. Lippolis, “Immunological signaling networks: integrating the body's immune response,” Journal of Animal Science, vol. 86, no. 14, pp. E53–E63, 2008.
[10]
P. Rainard and C. Riollet, “Innate immunity of the bovine mammary gland,” Veterinary Research, vol. 37, no. 3, pp. 369–400, 2006.
[11]
L. M. Sordillo, “Factors affecting mammary gland immunity and mastitis susceptibility,” Livestock Production Science, vol. 98, no. 1-2, pp. 89–99, 2005.
[12]
B. Halliwell and J. M. C. Gutteridege, Free Radicals in Biology and Medicine, Oxford University Press, 4th edition, 2007.
[13]
M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007.
[14]
B. M. Babior, “NADPH oxidase: an update,” Blood, vol. 93, no. 5, pp. 1464–1476, 1999.
[15]
K. Asehnoune, D. Strassheim, S. Mitra, J. Y. Kim, and E. Abraham, “Involvement of reactive oxygen species in toll-like receptor 4-dependent activation of NF-κB,” Journal of Immunology, vol. 172, no. 4, pp. 2522–2529, 2004.
[16]
H. J. Forman and M. Torres, “Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 12, part 2, pp. S4–S8, 2002.
[17]
J. J. Haddad, “Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation,” Biochemical and Biophysical Research Communications, vol. 296, no. 4, pp. 847–856, 2002.
[18]
P. R. Kvietys and D. N. Granger, “Role of reactive oxygen and nitrogen species in the vascular responses to inflammation,” Free Radical Biology & Medicine, vol. 52, no. 3, pp. 556–592, 2012.
[19]
M. S. Wolin, “Reactive oxygen species and the control of vascular function,” American Journal of Physiology, vol. 296, no. 3, pp. H539–H549, 2009.
[20]
G. Gloire, S. Legrand-Poels, and J. Piette, “NF-κB activation by reactive oxygen species: fifteen years later,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1493–1505, 2006.
[21]
C. C. Hsieh and J. Papaconstantinou, “Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice,” FASEB Journal, vol. 20, no. 2, pp. 259–268, 2006.
[22]
J. M. Rybicka, D. R. Balce, M. F. Khan, R. M. Krohn, and R. M. Yates, “NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 23, pp. 10496–10501, 2010.
[23]
A. Boueiz and P. M. Hassoun, “Regulation of endothelial barrier function by reactive oxygen and nitrogen species,” Microvascular Research, vol. 77, no. 1, pp. 26–34, 2009.
[24]
J. F. Maddox, K. M. Aherne, C. C. Reddy, and L. M. Sordillo, “Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency,” Journal of Leukocyte Biology, vol. 65, no. 5, pp. 658–664, 1999.
[25]
J. F. Maddox, C. C. Reddy, R. J. Eberhart, and R. W. Scholz, “Dietary selenium effects on milk eicosanoid concentration in dairy cows during coliform mastitis,” Prostaglandins, vol. 42, no. 4, pp. 369–378, 1991.
[26]
W. D. Splettstoesser and P. Schuff-Werner, “Oxidative stress in phagocytes—‘The enemy within’,” Microscopy Research and Technique, vol. 57, no. 6, pp. 441–455, 2002.
[27]
V. M. Victor, M. Rocha, and M. De La Fuente, “Immune cells: free radicals and antioxidants in sepsis,” International Immunopharmacology, vol. 4, no. 3, pp. 327–347, 2004.
[28]
H. Sies, “Biochemistry of Oxidative Stress,” Angewandte, vol. 25, no. 12, pp. 1058–1071, 1986.
[29]
B. Harwell, “Biochemistry of oxidative stress,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1147–1150, 2007.
[30]
U. Bernabucci, B. Ronchi, N. Lacetera, and A. Nardone, “Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season,” Journal of Dairy Science, vol. 85, no. 9, pp. 2173–2179, 2002.
[31]
C. Castillo, J. Hernandez, A. Bravo, M. Lopez-Alonso, V. Pereira, and J. L. Benedito, “Oxidative status during late pregnancy and early lactation in dairy cows,” Veterinary Journal, vol. 169, no. 2, pp. 286–292, 2005.
[32]
E. Gitto, R. J. Reiter, M. Karbownik et al., “Causes of oxidative stress in the pre- and perinatal period,” Biology of the Neonate, vol. 81, no. 3, pp. 146–157, 2002.
[33]
A. Aggarwal, A. Ashutosh, G. Chandra, and A. K. Singh, “Heat shock protein 70, oxidative stress, and antioxidant status in periparturient crossbred cows supplemented with alpha-tocopherol acetate,” Tropical Animal Health and Production . In press.
[34]
U. Bernabucci, B. Ronchi, N. Lacetera, and A. Nardone, “Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows,” Journal of Dairy Science, vol. 88, no. 6, pp. 2017–2026, 2005.
[35]
N. O'Boyle, C. M. Corl, J. C. Gandy, and L. M. Sordillo, “Relationship of body condition score and oxidant stress to tumor necrosis factor expression in dairy cattle,” Veterinary Immunology and Immunopathology, vol. 113, no. 3-4, pp. 297–304, 2006.
[36]
L. M. Sordillo, N. O'Boyle, J. C. Gandy, C. M. Corl, and E. Hamilton, “Shifts in thioredoxin reductase activity and oxidant status in mononuclear cells obtained from transition dairy cattle,” Journal of Dairy Science, vol. 90, no. 3, pp. 1186–1192, 2007.
[37]
O. D'Rourke, “Nutrition and udder health in dairy cows: a review,” Irish Veterinary Journal, vol. 62, supplement 4, pp. S15–S20, 2009.
[38]
N. Bourne, D. C. Wathes, K. E. Lawrence, M. McGowan, and R. A. Laven, “The effect of parenteral supplementation of vitamin E with selenium on the health and productivity of dairy cattle in the UK,” Veterinary Journal, vol. 177, no. 3, pp. 381–387, 2008.
[39]
U. Braun, R. Forrer, W. Furer, and H. Lutz, “Selenium and vitamin E in blood sera of cows from farms with increased incidence of disease,” Veterinary Record, vol. 128, no. 23, pp. 543–547, 1991.
[40]
B. J. Gerloff, “Effect of selenium supplementation on dairy cattle,” Journal of Animal Science, vol. 70, no. 12, pp. 3934–3940, 1992.
[41]
E. Kommisrud, O. ?ster?, and T. Vatn, “Blood selenium associated with health and fertility in Norwegian dairy herds,” Acta Veterinaria Scandinavica, vol. 46, no. 4, pp. 229–240, 2005.
[42]
R. J. Erskine, R. J. Eberhart, L. J. Hutchinson, and R. W. Scholz, “Blood selenium concentrations and glutathione peroxidase activities in dairy herds with high and low somatic cell counts,” Journal of the American Veterinary Medical Association, vol. 190, no. 11, pp. 1417–1421, 1987.
[43]
K. L. Smith, J. H. Harrison, D. D. Hancock, D. A. Todhunter, and H. R. Conrad, “Effect of vitamin E and selenium supplementation on incidence of clinical mastitis and duration of clinical symptoms,” Journal of Dairy Science, vol. 67, no. 6, pp. 1293–1300, 1984.
[44]
W. P. Weiss, J. S. Hogan, K. L. Smith, and K. H. Hoblet, “Relationships among selenium, vitamin E, and mammary gland health in commercial dairy herds,” Journal of Dairy Science, vol. 73, no. 2, pp. 381–390, 1990.
[45]
A. Ceballos-Marquez, H. W. Barkema, H. Stryhn, I. R. Dohoo, G. P. Keefe, and J. J. Wichtel, “Bulk tank milk selenium and its association with milk production parameters in Canadian dairy herds,” The Canadian Veterinary Journal, vol. 53, no. 1, pp. 51–56, 2012.
[46]
A. Ceballos-Marquez, H. W. Barkema, H. Stryhn et al., “The effect of selenium supplementation before calving on early-lactation udder health in pastured dairy heifers,” Journal of Dairy Science, vol. 93, no. 10, pp. 4602–4612, 2010.
[47]
A. Ceballos, J. Kruze, H. W. Barkema et al., “Barium selenate supplementation and its effect on intramammary infection in pasture-based dairy cows,” Journal of Dairy Science, vol. 93, no. 4, pp. 1468–1477, 2010.
[48]
J. H. Harrison, D. D. Hancock, and H. R. Conrad, “Vitamin E and selenium for reproduction of the dairy cow,” Journal of Dairy Science, vol. 67, no. 1, pp. 123–132, 1984.
[49]
D. Wilde, “Influence of macro and micro minerals in the peri-parturient period on fertility in dairy cattle,” Animal Reproduction Science, vol. 96, no. 3-4, pp. 240–249, 2006.
[50]
E. Brzezinska-Slebodzinska, J. K. Miller, J. D. Quigley, J. R. Moore, and F. C. Madsen, “Antioxidant status of dairy cows supplemented prepartum with vitamin E and selenium,” Journal of Dairy Science, vol. 77, no. 10, pp. 3087–3095, 1994.
[51]
A. J. Heinrichs, S. S. Costello, and C. M. Jones, “Control of heifer mastitis by nutrition,” Veterinary Microbiology, vol. 134, no. 1-2, pp. 172–176, 2009.
[52]
Z. Huang, A. H. Rose, and P. R. Hoffmann, “The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities,” Antioxidants & Redox Signaling, vol. 16, no. 7, pp. 705–743, 2012.
[53]
R. C. McKenzie, J. R. Arthur, and G. J. Beckett, “Selenium and the regulation of cell signaling, growth, and survival: Molecular and mechanistic aspects,” Antioxidants and Redox Signaling, vol. 4, no. 2, pp. 339–351, 2002.
[54]
J. J. Wichtel, “A review of selenium deficiency in grazing ruminants part 1: new roles for selenium in ruminant metabolism,” New Zealand Veterinary Journal, vol. 46, no. 2, pp. 47–52, 1998.
[55]
W. P. Weiss and J. S. Hogan, “Effect of selenium source on selenium status, neutrophil function, and response to intramammary endotoxin challenge of dairy cows,” Journal of Dairy Science, vol. 88, no. 12, pp. 4366–4374, 2005.
[56]
L. M. Sordillo and K. L. Streicher, “Mammary gland immunity and mastitis susceptibility,” Journal of Mammary Gland Biology and Neoplasia, vol. 7, no. 2, pp. 135–146, 2002.
[57]
P. J. Grasso, R. W. Scholz, R. J. Erskine, and R. J. Eberhart, “Phagocytosis, bactericidal activity, and oxidative metabolism of milk neutrophils from dairy cows fed selenium-supplemented and selenium-deficient diets,” American Journal of Veterinary Research, vol. 51, no. 2, pp. 269–274, 1990.
[58]
J. S. Hogan, K. L. Smith, W. P. Weiss, D. A. Todhunter, and W. L. Schockey, “Relationships among vitamin E, selenium, and bovine blood neutrophils,” Journal of Dairy Science, vol. 73, no. 9, pp. 2372–2378, 1990.
[59]
N. Ndiweni and J. M. Finch, “Effects of in vitro supplementation with α-tocopherol and selenium on bovine neutrophil functions: implications for resistance to mastitis,” Veterinary Immunology and Immunopathology, vol. 51, no. 1-2, pp. 67–78, 1996.
[60]
C. K. Cebra, J. R. Heidel, R. O. Crisman, and B. V. Stang, “The relationship between endogenous cortisol, blood micronutrients, and neutrophil function in postparturient Holstein cows,” Journal of Veterinary Internal Medicine, vol. 17, no. 6, pp. 902–907, 2003.
[61]
N. Ndiweni and J. M. Finch, “Effects of in vitro supplementation of bovine mammary gland macrophages and peripheral blood lymphocytes with α-tocopherol and sodium selenite: implications for udder defences,” Veterinary Immunology and Immunopathology, vol. 47, no. 1-2, pp. 111–121, 1995.
[62]
Y. Z. Cao, J. F. Maddox, A. M. Mastro, R. W. Scholz, G. Hildenbrandt, and C. C. Reddy, “Selenium deficiency alters the lipoxygenase pathway and mitogenic response in bovine lymphocytes,” Journal of Nutrition, vol. 122, no. 11, pp. 2121–2127, 1992.
[63]
Y. Z. Cao, Z. S. Cohen, J. A. Weaver, and L. M. Sordillo, “Selenium modulates 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) biosynthesis in bovine aortic endothelial cells,” Antioxidants and Redox Signaling, vol. 3, no. 6, pp. 1147–1152, 2001.
[64]
C. M. Corl, Y. Z. Cao, Z. S. Cohen, and L. M. Sordillo, “Oxidant stress enhances Lyso-PAF-AcT activity by modifying phospholipase D and phosphatidic acid in aortic endothelial cells,” Biochemical and Biophysical Research Communications, vol. 302, no. 3, pp. 610–614, 2003.
[65]
G. Hampel, K. Watanabe, B. B. Weksler, and E. A. Jaffe, “Selenium deficiency inhibits prostacyclin release and enhances production of platelet activating factor by human endothelial cells,” Biochimica et Biophysica Acta, vol. 1006, no. 2, pp. 151–158, 1989.
[66]
Y. Z. Cao, C. C. Reddy, and L. M. Sordillo, “Altered eicosanoid biosynthesis in selenium-deficient endothelial cells,” Free Radical Biology and Medicine, vol. 28, no. 3, pp. 381–389, 2000.
[67]
J. A. Weaver, J. F. Maddox, Y. Z. Cao, I. K. Mullarky, and L. M. Sordillo, “Increased 15-HPETE production decreases prostacyclin synthase activity during oxidant stress in aortic endothelial cells,” Free Radical Biology and Medicine, vol. 30, no. 3, pp. 299–308, 2001.
[68]
L. M. Sordillo, J. A. Weaver, Y. Z. Cao, C. Corl, M. J. Sylte, and I. K. Mullarky, “Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells,” Prostaglandins and Other Lipid Mediators, vol. 76, no. 1–4, pp. 19–34, 2005.
[69]
C. Burvenich, E. Monfardini, J. Mehrzad, A. V. Capuco, and M. J. Paape, “Role of neutrophil polymorphonuclear leukocytes during bovine coliform mastitis: physiology or pathology?” Verhandelingen—Koninklijke Academie voor Geneeskunde van Belgie, vol. 66, no. 2, pp. 97–150, 2004.
[70]
R. J. Erskine, R. J. Eberhart, P. J. Grasso, and R. W. Scholz, “Induction of Escherichia coli mastitis in cows fed selenium-deficient or selenium-supplemented diets,” American Journal of Veterinary Research, vol. 50, no. 12, pp. 2093–2100, 1989.
[71]
C. Lawson and S. Wolf, “ICAM-1 signaling in endothelial cells,” Pharmacological Reports, vol. 61, no. 1, pp. 22–32, 2009.
[72]
L. M. Sordillo, K. L. Streicher, I. K. Mullarky, J. C. Gandy, W. Trigona, and C. M. Corl, “Selenium inhibits 15-hydroperoxyoctadecadienoic acid-induced intracellular adhesion molecule expression in aortic endothelial cells,” Free Radical Biology and Medicine, vol. 44, no. 1, pp. 34–43, 2008.
[73]
J. E. Squires and M. J. Berry, “Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors,” IUBMB Life, vol. 60, no. 4, pp. 232–235, 2008.
[74]
A. A. Turanov, X. M. Xu, B. A. Carlson, M. H. Yoo, V. N. Gladyshev, and D. L. Hatfield, “Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis,” Advances in Nutrition, vol. 2, no. 2, pp. 122–128, 2011.
[75]
H. J. S. Larsen, “Relations between selenium and immunity,” Journal of Agricultural Science, vol. 11, pp. 105–119, 1993.
[76]
N. Ndweni, T. R. Field, M. R. Williams, J. M. Booth, and J. M. Finch, “Studies on the incidence of clinical mastitis and blood levels of Vitamin E and selenium in dairy herds in England,” Veterinary Record, vol. 129, no. 5, pp. 86–88, 1991.
[77]
S. L. Aitken, E. L. Karcher, P. Rezamand et al., “Evaluation of antioxidant and proinflammatory gene expression in bovine mammary tissue during the periparturient period,” Journal of Dairy Science, vol. 92, no. 2, pp. 589–598, 2009.
[78]
K. L. Streicher, M. J. Sylte, S. E. Johnson, and L. M. Sordillo, “Thioredoxin reductase regulates angiogenesis by increasing endothelial cell-derived vascular endothelial growth factor,” Nutrition and Cancer, vol. 50, no. 2, pp. 221–231, 2004.
[79]
W. L. Trigona, I. K. Mullarky, Y. Cao, and L. M. Sordillo, “Thioredoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells,” Biochemical Journal, vol. 394, no. 1, pp. 207–216, 2006.
[80]
P. R. Larsen and M. J. Berry, “Nutritional and hormonal regulation of thyroid hormone deiodinases,” Annual Review of Nutrition, vol. 15, pp. 323–352, 1995.
[81]
N. R. Council, Nutrient Requirements of Dairy Cattle, National Academy of Science, Washington, DC, USA, 2001.
[82]
M. Malbe, M. Klaassen, W. Fang et al., “Comparisons of selenite and selenium yeast feed supplements on Se-incorporation, mastitis and leucocyte function in Se-deficient dairy cows,” Zentralblatt für Veterin?rmedizin. Reihe A, vol. 42, no. 2, pp. 111–121, 1995.