全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Ulcers  2012 

Gastroprotective Efficacy of Coenzyme Q10 in Indomethacin-Induced Gastropathy: Other Potential Mechanisms

DOI: 10.1155/2012/957898

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tough recently the mitochondrial bioenergetic coenzyme (Co)Q10 has been shown to protect against indomethacin-induced gastric ulceration, yet the full mechanistic cassettes have not been investigated. Therefore, the current investigation assessed further gastroprotective mechanisms of CoQ10 using the indomethacin-induced gastropathy model. While CoQ10 was administered at 3 dose levels to male Wistar rats, the proton pump inhibitor, pantoprazole, was given at 4 dose levels ahead of pyloric ligation and indomethacin administration. Indomethacin evoked gastric ulcerations that were associated by decreased gastric mucosal nitric oxide and glutathione levels. The NSAID reduced gastric volume and mucin content, but increased titratable acidity, acid output, and peptic activity. CoQ10, especially at the higher dose levels, as well as pantoprazole pretreatments reverted almost all diversions induced by the NSAID to different extends. Moreover, preadministration with the nonselective nitric oxide synthase inhibitor, L-NAME, boosted ulcer formation that was associated by suppression of gastric mucosal nitric oxide in CoQ10 and pantoprazole-treated groups. The current investigation shows that CoQ10 guards against gastric ulceration via its partial inhibition of titratable acidity and peptic activity, as well as enhancement of mucin secretion due to both gastric mucosal nitric oxide and glutathione replenishment, especially at the higher dose levels. 1. Introduction Ubiquinone Q10, 2, 3 dimethoxy-5 methyl-6-decaprenyl benzoquinone, or simply coenzyme (Co) Q10, is an indispensible cofactor in complexes I to III of the mitochondrial electron-transport chain [1] acting either as an electron acceptor or donor [2]. Empowered by its lipid solubility, CoQ10 is found in virtually all cell membranes, as well as lipoproteins [2]. Its reduced form, ubiquinol, is produced in the GIT or by mitochondrial flavoenzymes [1, 3, 4] that is a potent free radical scavenger [2, 5]. The maximal antioxidative power of the ubiquinol is credited to its electron donating properties that neutralizes free radicals [6] and its ability to replenish other valuable endogenous antioxidants [2, 7]. Besides, the study of Papucci et al. [8] demonstrated that CoQ10-mediated antiapoptotic activity might be an essential mechanism in its powerful actions. The role of CoQ10 in protection against neurodegenerative diseases, aging, as well as other ailments such as diabetes and cardiovascular impairments is well established [9–12]. However, limited literature exists about its efficacy in combating gastric

References

[1]  L. Ernster and G. Dallner, “Biochemical, physiological and medical aspects of ubiquinone function,” Biochimica et Biophysica Acta, vol. 1271, no. 1, pp. 195–204, 1995.
[2]  F. L. Crane, “Biochemical functions of coenzyme Q10,” Journal of the American College of Nutrition, vol. 20, no. 6, pp. 591–598, 2001.
[3]  D. Mohr, Y. Umeda, T. G. Redgrave, and R. Stocker, “Antioxidant defenses in rat intestine and mesenteric lymph,” Redox Report, vol. 4, no. 3, pp. 79–87, 1999.
[4]  S. L. Molyneux, J. M. Young, C. M. Florkowski, M. Lever, and P. M. George, “Coenzyme Q10: is there a clinical role and a case for measurement?” The Clinical Biochemist Reviews, vol. 29, pp. 71–82, 2008.
[5]  H. Nohl, L. Gille, and A. V. Kozlov, “Critical aspects of the antioxidant function of coenzyme Q in biomembranes,” Biofactors, vol. 9, no. 2–4, pp. 155–161, 1999.
[6]  A. Mellors and A. L. Tappel, “The inhibition of mitochondrial peroxidation by ubiquinone and ubiquinol,” Journal of Biological Chemistry, vol. 241, no. 19, pp. 4353–4356, 1966.
[7]  F. Atroshi, A. Rizzo, I. Biese et al., “Fumonisin B1-induced DNA damage in rat liver and spleen: effects of pretreatment with coenzyme Q10, L-carnitine, α-tocopherol and selenium,” Pharmacological Research, vol. 40, no. 6, pp. 459–467, 1999.
[8]  L. Papucci, N. Schiavone, E. Witort et al., “Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property,” Journal of Biological Chemistry, vol. 278, no. 30, pp. 28220–28228, 2003.
[9]  M. F. Beal, D. R. Henshaw, B. G. Jenkins, B. R. Rosen, and J. B. Schulz, “Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate,” Annals of Neurology, vol. 36, no. 6, pp. 882–888, 1994.
[10]  N. Ishii, N. Senoo-Matsuda, K. Miyake et al., “Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress,” Mechanisms of Ageing and Development, vol. 125, no. 1, pp. 41–46, 2004.
[11]  G. F. Watts, D. A. Playford, K. D. Croft, N. C. Ward, T. A. Mori, and V. Burke, “Coenzyme Q10 improves endothelial dysfunction of the brachial artery in Type II diabetes mellitus,” Diabetologia, vol. 45, no. 3, pp. 420–426, 2002.
[12]  A. Kumar, H. Kaur, P. Devi, and V. Mohan, “Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome,” Pharmacology and Therapeutics, vol. 124, no. 3, pp. 259–268, 2009.
[13]  Y. Kohli, Y. Suto, and T. Kodama, “Effect of hypoxia on acetic acid ulcer of the stomach in rats with or without coenzyme Q10,” Japanese Journal of Experimental Medicine, vol. 51, no. 2, pp. 105–108, 1981.
[14]  H. S. El-Abhar, “Coenzyme Q10: a novel gastroprotective effect via modulation of vascular permeability, prostaglandin E2, nitric oxide and redox status in indomethacin-induced gastric ulcer model,” European Journal of Pharmacology, vol. 649, no. 1–3, pp. 314–319, 2010.
[15]  Institute of Laboratory Animal Resources, Guide for the Care and Use of Laboratory Animals, National Academy Press, Washington, DC, USA, 1996.
[16]  A. Király, G. Süt?, A. Vincze, G. Tóth, Z. Matus, and G. Mózsik, “Correlation between the cytoprotective effect of beta-carotene and its gastric mucosal level in indomethacin (IND) treated rats with or without acute surgical vagotomy,” Acta Physiologica Hungarica, vol. 80, no. 1–4, pp. 213–218, 1992.
[17]  M. M. Khattab, M. Z. Gad, and D. Abdallah, “Protective role of nitric oxide in indomethacin-induced gastric ulceration by a mechanism independent of gastric acid secretion,” Pharmacological Research, vol. 43, no. 5, pp. 463–467, 2001.
[18]  H. Shay, D. C. Sun, and M. Gruenstein, “A quantitative method for measuring spontaneous gastric secretion in the rat,” Gastroenterology, vol. 26, no. 6, pp. 906–913, 1954.
[19]  K. Nishida, Y. Ohta, and I. Ishiguro, “Relation of inducible nitric oxide synthase activity to lipid peroxidation and nonprotein sulfhydryl oxidation in the development of stress-induced gastric mucosal lesions in rats,” Nitric Oxide, vol. 2, no. 4, pp. 215–223, 1998.
[20]  M.I. Grossman, “Gastric secretion,” Physiology, vol. 1, pp. 1–5, 1963.
[21]  D. A. Brodie and K. F. Hooke, “The effect of vasoactive agents on stress-induced gastric hemorrhage in the rat,” Digestion, vol. 4, no. 4, pp. 193–204, 1971.
[22]  A. R. Sanyal, O. K. Denath, S. K. Bhattacharya, and K. D. Gode, “The effect of cytoheptadine on gastric acidity,” in Peptic Ulcer, Scandinavian University Books, C. J. Pfeiffer, Ed., pp. 312–318, Munksgaard, Copenhagen, Denmark, 1971.
[23]  R. J. Winzler, “Determination of serum glycoproteins,” in Methods of Biochemical Analysis, D. Glick, Ed., pp. 279–311, Interscience, New York, NY, USA, 1955.
[24]  E. Beutler, O. Duron, and B. M. Kelly, “Improved method for the determination of blood glutathione,” The Journal of Laboratory and Clinical Medicine, vol. 61, pp. 882–888, 1963.
[25]  K. M. Miranda, M. G. Espey, and D. A. Wink, “A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite,” Nitric Oxide, vol. 5, no. 1, pp. 62–71, 2001.
[26]  A. Allen, G. Flemstr?m, A. Garner, and E. Kivilaakso, “Gastroduodenal mucosal protection,” Physiological Reviews, vol. 73, no. 4, pp. 823–857, 1993.
[27]  H. Kim and K. H. Kim, “Role of nitric oxide in oxidative damage in isolated rabbit gastric cells exposed to hypoxia-reoxygenation,” Digestive Diseases and Sciences, vol. 43, no. 5, pp. 1042–1049, 1998.
[28]  J. L. Wallace, “Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn't the stomach digest itself?” Physiological Reviews, vol. 88, no. 4, pp. 1547–1565, 2008.
[29]  F. Oztay, B. Ergin, S. Ustunova et al., “Effects of coenzyme Q10 on the heart ultrastructure and nitric oxide synthase during hyperthyroidism,” The Chinese Journal of Physiology, vol. 50, no. 5, pp. 217–224, 2007.
[30]  A. Robert, D. Eberle, and N. Kaplowitz, “Role of glutathione in gastric mucosal cytoprotection,” The American Journal of Physiology, vol. 247, no. 3, pp. G296–G304, 1984.
[31]  A. M. Cheng, S. W. Morrison, D. X. Yang, and S. J. Hagen, “Energy dependence of restitution in the gastric mucosa,” American Journal of Physiology, vol. 281, no. 2, pp. C430–C438, 2001.
[32]  B. L. Slomiany, J. Piotrowski, and A. Slomiany, “Endothelin-1, interleukin-4 and nitric oxide synthase modulators of gastric mucosal injury by indomethacin: effect of antiulcer agents,” Journal of Physiology and Pharmacology, vol. 50, no. 2, pp. 197–210, 1999.
[33]  M. L. Schubert, “Gastric secretion,” Current Opinion in Gastroenterology, vol. 26, no. 6, pp. 598–603, 2010.
[34]  Y. Ishihara, Y. Uchida, S. Kitamura, and F. Takaku, “Effect of coenzyme Q10, a quinone derivative, on guinea pig lung and tracheal tissue,” Arzneimittel-Forschung, vol. 35, no. 6, pp. 929–933, 1985.
[35]  I. Gritti, G. Banfi, and G. S. Roi, “Pepsinogens: physiology, pharmacology pathophysiology and exercise,” Pharmacological Research, vol. 41, no. 3, pp. 265–281, 2000.
[36]  J. G. Hatlebakk and A. Berstad, “Pharmacokinetic optimisation in the treatment of gastro-oesophageal reflux disease,” Clinical Pharmacokinetics, vol. 31, no. 5, pp. 386–406, 1996.
[37]  D. Morgan, J. Pandolfino, P. O. Katz, J. L. Goldstein, P. N. Barker, and M. Illueca, “Clinical trial: gastric acid suppression in Hispanic adults with symptomatic gastro-oesophageal reflux disease—comparator study of esomeprazole, lansoprazole and pantoprazole,” Alimentary Pharmacology and Therapeutics, vol. 32, no. 2, pp. 200–208, 2010.
[38]  P. Bigoniya, A. Shukla, C. S. Singh, and P. Gotiya, “Comparative anti-ulcerogenic study of pantoprazole formulation with and without sodium bicarbonate buffer on pyloric ligated rat,” Journal of Pharmacology and Pharmacotherapeutics, vol. 2, pp. 179–184, 2011.
[39]  J. R. Malagelada, G. F. Longstreth, and T. B. Deering, “Gastric secretion and emptying after ordinary meals in duodenal ulcer,” Gastroenterology, vol. 73, no. 5, pp. 989–994, 1977.
[40]  C. Blandizzi, G. Natale, G. Gherardi et al., “Gastroprotective effects of pantoprazole against experimental mucosal damage,” Fundamental and Clinical Pharmacology, vol. 14, no. 2, pp. 89–99, 2000.
[41]  I. Murakami, H. Satoh, S. Asano, and R. Maeda, “Role of capsaicin-sensitive sensory neurons and nitric oxide in the protective effect of lansoprazole, a proton pump inhibitor, on the gastric mucosa in rats,” Japanese Journal of Pharmacology, vol. 72, no. 2, pp. 137–147, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133