全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cytokine Polymorphisms, Their Influence and Levels in Brazilian Patients with Pulmonary Tuberculosis during Antituberculosis Treatment

DOI: 10.1155/2013/285094

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cytokines play an essential role during active tuberculosis disease and cytokine genes have been described in association with altered cytokine levels. Therefore, the aim of this study was to verify if IFNG, IL12B, TNF, IL17A, IL10, and TGFB1 gene polymorphisms influence the immune response of Brazilian patients with pulmonary tuberculosis (PTB) at different time points of antituberculosis treatment (T1, T2, and T3). Our results showed the following associations: IFNG +874 T allele and IFNG +2109 A allele with higher IFN-γ levels; IL12B +1188 C allele with higher IL-12 levels; TNF ?308 A allele with higher TNF-α plasma levels in controls and mRNA levels in PTB patients at T1; IL17A A allele at rs7747909 with higher IL-17 levels; IL10 ?819 T allele with higher IL-10 levels; and TGFB1 +29 CC genotype higher TGF-β plasma levels in PTB patients at T2. The present study suggests that IFNG +874T/A, IFNG +2109A/G, IL12B +1188A/C, IL10 ?819C/T, and TGFB1 +21C/T are associated with differential cytokine levels in pulmonary tuberculosis patients and may play a role in the initiation and maintenance of acquired cellular immunity to tuberculosis and in the outcome of the active disease while on antituberculosis treatment. 1. Introduction Mycobacterium tuberculosis (M. tuberculosis) is an intracellular obligate aerobic pathogen which has a predilection for the lungs [1]. Macrophages initiate phagocytosis of M. tuberculosis bacilli and regulate immune responses mediated by proinflammatory cytokines such as TNF-α. Effector T lymphocytes (T cells) and natural killer (NK) cells secrete IFN-γ which activate alveolar macrophages to produce reactive intermediates from nitrogen and oxygen, inhibiting growth and promoting mycobacteria death [2]. IL-12, produced mainly by macrophages and dendritic cells, has a key role in the immune response to M. tuberculosis, bridging innate and adaptive immunity. Moreover, IL-12 induces T cells and NK cells to produce proinflammatory cytokines such as IFN-γ and TNF-α while also regulating the production of IL-17 [2, 3]. A synergistic response of IFN-γ, IL-12, TNF-α and IL-17 activates macrophage, stimulating these cells to eliminate the intracellular pathogen, acting as a major effector mechanism of the cellular immune response [4]. Despite the protective effect of Th1 responses against M. tuberculosis, certain cytokines, such as TNF-α, are correlated with the immunopathogenesis of the disease [5]. To prevent tissue damage, active tuberculosis is associated with decreased Th1 and increased production and action of suppressing cytokines

References

[1]  A. Raja, “Immunology of tuberculosis,” Indian Journal of Medical Research, vol. 120, pp. 213–232, 2004.
[2]  S. H. E. Kaufmann, “Protection against tuberculosis: cytokines, T cells, and macrophages,” Annals of the Rheumatic Diseases, vol. 61, no. 2, pp. 1154–1158, 2002.
[3]  M. A. Hoeve, N. D. Savage, T. de Boer, et al., “Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells,” European Journal of Immunology, vol. 36, pp. 661–670, 2006.
[4]  E. Sahiratmadja, B. Alisjahbana, T. de Boer et al., “Dynamic changes in pro- and anti-inflammatory cytokine profiles and gamma interferon receptor signaling integrity correlate with tuberculosis disease activity and response to curative treatment,” Infection and Immunity, vol. 75, no. 2, pp. 820–829, 2007.
[5]  R. van Crevel, T. H. M. Ottenhoff, and J. W. M. van der Meer, “Innate immunity to Mycobacterium tuberculosis,” Clinical Microbiology Reviews, vol. 15, no. 2, pp. 294–309, 2002.
[6]  J. l. Flynn and J. Chan, “Immunology of tuberculosis,” Annual Review of Immunology, vol. 19, pp. 93–129, 2001.
[7]  Z. Toossi and J. J. Ellner, “The role of TGF beta in the pathogenesis of human tuberculosis,” Clinical Immunology and Immunopathology, vol. 87, pp. 107–114, 1998.
[8]  R. Bellamy, “Susceptibility to mycobacterial infections: the importance of host genetics,” Genes & Immunity, vol. 4, pp. 4–11, 2003.
[9]  J. L. Casanova and L. Abel, “Genetic dissection of immunity to mycobacteria: the human model,” Annual Review of Immunology, vol. 20, pp. 581–620, 2002.
[10]  N. Remus, A. Alcais, and L. Abel, “Human genetics of common mycobacterial infections,” Immunologic Research, vol. 28, pp. 109–129, 2003.
[11]  A. C. Vallinoto, E. S. Gra?a, M. S. Ara?jo, et al., “IFNG +874T/A polymorphism and cytokine plasma levels are associated with susceptibility to Mycobacterium tuberculosis infection and clinical manifestation of tuberculosis,” Human Immunology, vol. 71, no. 7, pp. 692–696, 2010.
[12]  Abhimanyu, I. R. Mangangcha, P. Jha et al., “Differential serum cytokine levels are associated with cytokine gene polymorphisms in north Indians with active pulmonary tuberculosis,” Infection, Genetics and Evolution, vol. 11, no. 5, pp. 1015–1022, 2011.
[13]  V. Yilmaz, S. P. Yentour, and G. Saruhan-Direskeneli, “IL-12 and IL-10 polymorphisms and their effects on cytokine production,” Cytokine, vol. 30, no. 4, pp. 188–194, 2005.
[14]  D. López-Maderuelo, F. Arnalich, R. Serantes, et al., “Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 7, pp. 970–975, 2003.
[15]  N. Sallakci, M. Coskun, Z. Berber et al., “Interferon-γ gene+874T-A polymorphism is associated with tuberculosis and gamma interferon response,” Tuberculosis, vol. 87, no. 3, pp. 225–230, 2007.
[16]  A. Ansari, N. Talat, B. Jamil et al., “Cytokine gene polymorphisms across tuberculosis clinical spectrum in Pakistani patients,” PLoS ONE, vol. 4, no. 3, Article ID e4778, 2009.
[17]  P. Selvaraj, K. Alagarasu, M. Harishankar, M. Vidyarani, D. Nisha Rajeswari, and P. R. Narayanan, “Cytokine gene polymorphisms and cytokine levels in pulmonary tuberculosis,” Cytokine, vol. 43, no. 1, pp. 26–33, 2008.
[18]  M. Vidyarani, P. Selvaraj, S. P. Anand, M. S. Jawahar, A. R. Adhilakshmi, and P. R. Narayanan, “Interferon gamma (IFNγ) & interleukin-4 (IL-4) gene variants & cytokine levels in pulmonary tuberculosis,” Indian Journal of Medical Research, vol. 124, no. 4, pp. 403–410, 2006.
[19]  S. Sharma, J. Rathored, B. Ghosh, and S. K. Sharma, “Genetic polymorphisms in TNF genes and tuberculosis in North Indians,” BMC Infectious Diseases, vol. 10, no. 165, pp. 1–9, 2010.
[20]  V. Pravica, C. Perrey, A. Stevens, J. H. Lee, and I. V. Hutchinson, “A single nucleotide polymorphism in the first intron of the human IFN-γ gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-γ production,” Human Immunology, vol. 61, no. 9, pp. 863–866, 2000.
[21]  S. Henri, F. Stefani, D. Parzy, C. Eboumbou, A. Dessein, and C. Chevillard, “Description of three new polymorphisms in the intronic and 3′ UTR regions of the human interferon gamma gene,” Genes and Immunity, vol. 3, no. 1, pp. 1–4, 2002.
[22]  M. A. García-González, A. Lanas, J. Wu, et al., “Lack of association of IL-12 p40 gene polymorphism with peptic ulcer disease,” Human Immunology, vol. 66, no. 1, pp. 72–76, 2005.
[23]  A. G. Wilson, F. S. di Giovine, A. I. F. Blakemore, and G. W. Duff, “Single base polymorphism in the human Tumour Necrosis Factor alpha (TNFα) gene detectable by NcoI restriction of PCR product,” Human Molecular Genetics, vol. 1, no. 5, p. 353, 1992.
[24]  A. Boyum, “Separation of leukocytes from blood and bone marrow. Introduction,” Scandinavian Journal of Clinical & Laboratory Investigation, vol. 97, article 7, 1968.
[25]  A. Larionov, A. Krause, and W. R. Miller, “A standard curve based method for relative real time PCR data processing,” BMC Bioinformatics, vol. 6, article 62, 2005.
[26]  A. Larionov, A. Krause, and W. Miller, “A standard curve based method for relative real time PCR data processing,” BMC Bioinformatics, vol. 6, article 62, 2005.
[27]  A. V. Hill, “The immunogenetics of human infectious diseases,” Annual Review of Immunology, vol. 16, pp. 593–617, 1998.
[28]  T. Heinemeyer, E. Wingender, I. Reuter, et al., “Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL,” Nucleic Acids Research, vol. 26, pp. 362–367, 1998.
[29]  V. Pravica, A. Asderakis, C. Perrey, A. Hajeer, P. J. Sinnott, and I. V. Hutchinson, “In vitro production of IFN-γ correlates with CA repeat polymorphism in the human IFN-γ gene,” European Journal of Immunogenetics, vol. 26, no. 1, pp. 1–3, 1999.
[30]  M. K. Arababadi, A. A. Pourfathollah, A. Jafarzadeh et al., “Non-association of IL-12 +1188 and IFN-γ +874 polymorphisms with cytokines serum level in occult HBV infected patients,” Saudi Journal of Gastroenterology, vol. 17, no. 1, pp. 30–35, 2011.
[31]  U. Vollmer-Conna, B. F. Piraino, B. Cameron et al., “Cytokine polymorphisms have a synergistic effect on severity of the acute sickness response to infection,” Clinical Infectious Diseases, vol. 47, no. 11, pp. 1418–1425, 2008.
[32]  G. I. Matos, C. J. Covas, R. C. Bittar, et al., “IFNG +874T/A polymorphism is not associated with American tegumentary leishmaniasis susceptibility but can influence Leishmania induced IFN-gamma production,” BMC Infectious Diseases, vol. 7, article 33, 2007.
[33]  R. Rad, A. Dossumbekova, B. Neu et al., “Cytokine gene polymorphisms influence mucosal cytokine expression, gastric inflammation, and host specific colonisation during Helicobacter pylori infection,” Gut, vol. 53, no. 8, pp. 1082–1089, 2004.
[34]  A. G. Pacheco, C. C. Cardoso, and M. O. Moraes, “IFNG +874T/A, IL10 -1082G/A and TNF -308G/A polymorphisms in association with tuberculosis susceptibility: a meta-analysis study,” Human Genetics, vol. 123, no. 5, pp. 477–484, 2008.
[35]  C. C. Cardoso, A. C. Pereira, V. N. Brito-de-Souza et al., “IFNG +874 T>A single nucleotide polymorphism is associated with leprosy among Brazilians,” Human Genetics, vol. 128, no. 5, pp. 481–490, 2010.
[36]  S. Henri, F. Stefani, D. Parzy, C. Eboumbou, A. Dessein, and C. Chevillard, “Description of three new polymorphisms in the intronic and 3′ UTR regions of the human interferon gamma gene,” Genes and Immunity, vol. 3, no. 1, pp. 1–4, 2002.
[37]  M. Liu, B. Cao, H. Zhang, Y. Dai, X. Liu, and C. Xu, “Association of interferon-gamma gene haplotype in the Chinese population with hepatitis B virus infection,” Immunogenetics, vol. 58, no. 11, pp. 859–864, 2006.
[38]  Y. Lin, M. Zhang, F. M. Hofman, J. Gong, and P. F. Barnes, “Absence of a prominent Th2 cytokine response in human tuberculosis,” Infection and Immunity, vol. 64, no. 4, pp. 1351–1356, 1996.
[39]  M. Zhang, Y. Lin, D. V. Iyer, J. Gong, J. S. Abrams, and P. F. Barnes, “T-cell cytokine responses in human infection with Mycobacterium tuberculosis,” Infection and Immunity, vol. 63, no. 8, pp. 3231–3234, 1995.
[40]  G. E. Etokebe, L. Bulat-Kardum, M. S. Johansen et al., “Interferon-γ gene (T874A and G2109A) polymorphisms are associated with microscopy-positive tuberculosis,” Scandinavian Journal of Immunology, vol. 63, no. 2, pp. 136–141, 2006.
[41]  M. K. Balcewicz-Sablinska, J. Keane, H. Kornfeld, and H. G. Remold, “Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-α,” Journal of Immunology, vol. 161, no. 5, pp. 2636–2641, 1998.
[42]  A. Davoodi-Semiromi, J. J. Yang, and J. X. She, “IL-12p40 is associated with type 1 diabetes in Caucasian-American families,” Diabetes, vol. 51, no. 7, pp. 2334–2336, 2002.
[43]  S. Stanilova and L. Miteva, “Taq-I polymorphism in 3′UTR of the IL-12 and association with IL-12p40 production from human PBMC,” Genes & Immunity, vol. 6, pp. 364–366, 2005.
[44]  A. M. Cooper, A. Solache, and S. A. Khader, “Interleukin-12 and tuberculosis: an old story revisited,” Current Opinion in Immunology, vol. 19, pp. 441–447, 2006.
[45]  G. Bouma, J. B. A. Crusius, M. Oudkerk Pool et al., “Secretion of tumour necrosis factor α and lymphotoxin α in relation to polymorphisms in the TNF genes and HLA-DR alleles. Relevance for inflammatory bowel disease,” Scandinavian Journal of Immunology, vol. 43, no. 4, pp. 456–463, 1996.
[46]  A. Bozzi, P. P. Pereira, B. S. Reis, et al., “Interleukin-10 and tumor necrosis factor-alpha single nucleotide gene polymorphism frequency in paracoccidioidomycosis,” Human Immunology, vol. 67, no. 11, pp. 931–939, 2006.
[47]  C. C. Cardoso, A. C. Pereira, V. N. Brito-de-Souza, et al., “TNF -308G > A single nucleotide polymorphism is associated with leprosy among Brazilians: a genetic epidemiology assessment, meta-analysis, and functional study,” The Journal of Infectious Diseases, vol. 204, no. 8, pp. 1256–1263, 2011.
[48]  T. Y. Chen, Y. S. Hsieh, T. T. Wu, et al., “Impact of serum levels and gene polymorphism of cytokines on chronic hepatitis C infection,” Translational Research, vol. 150, no. 2, pp. 116–121, 2007.
[49]  E. Louis, D. Franchimont, A. Piron et al., “Tumour necrosis factor (TNF) gene polymorphism influences TNF-α production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans,” Clinical and Experimental Immunology, vol. 113, no. 3, pp. 401–406, 1998.
[50]  S. Taudorf, K. S. Krabbe, R. M. G. Berg, K. M?ller, B. K. Pedersen, and H. Bruunsgaard, “Common studied polymorphisms do not affect plasma cytokine levels upon endotoxin exposure in humans,” Clinical & Experimental Immunology, vol. 152, no. 1, pp. 147–152, 2008.
[51]  A. G. Wilson, J. A. Symons, T. L. McDowell, H. O. McDevitt, and G. W. Duff, “Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 7, pp. 3195–3199, 1997.
[52]  M. Feldmann and R. N. Maini, “Anti-TNF-alpha therapy of rheumatoidarthritis: what have we learned?” Annual Review of Immunology, vol. 19, pp. 163–196, 2001.
[53]  R. Maini, E. W. St Clair, F. Breedveld et al., “Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial,” The Lancet, vol. 354, no. 9194, pp. 1932–1939, 1999.
[54]  S. A. Khader, G. K. Bell, J. E. Pearl, et al., “IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge,” Nature Immunology, vol. 8, pp. 369–377, 2007.
[55]  S. A. Khader, J. E. Pearl, K. Sakamoto et al., “IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-γ responses if IL-12p70 is available,” Journal of Immunology, vol. 175, no. 2, pp. 788–795, 2005.
[56]  M. Umemura, A. Yahagi, S. Hamada, et al., “IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette- Guerin infection,” The Journal of Immunology, vol. 178, pp. 3786–3796, 2007.
[57]  T. M. Wozniak, A. A. Ryan, J. A. Triccas, and W. J. Britton, “Plasmid interleukin-23 (IL-23), but not plasmid IL-27, enhances the protective efficacy of a DNA vaccine against Mycobacterium tuberculosis infection,” Infection and Immunity, vol. 74, no. 1, pp. 557–565, 2006.
[58]  S. H. Opdal, “IL-10 gene polymorphisms in infectious disease and SIDS,” FEMS Immunology and Medical Microbiology, vol. 42, no. 1, pp. 48–52, 2004.
[59]  A. C. Pereira, V. N. Brito-de-Souza, C. C. Cardoso et al., “Genetic, epidemiological and biological analysis of interleukin-10 promoter single-nucleotide polymorphisms suggests a definitive role for -819C/T in leprosy susceptibility,” Genes and Immunity, vol. 10, no. 2, pp. 174–180, 2009.
[60]  V. A. Boussiotis, E. Y. Tsai, E. Yunis, et al., “IL-10 producing T cells suppress immune responses in anergic tuberculosis patients,” The Journal of Clinical Investigation, vol. 105, pp. 1317–1325, 2000.
[61]  F. O. Sánchez, J. I. Rodriguez, G. Agudelo, and L. F. Garcia, “Immune responsiveness and lymphokine production in patients with tuberculosis and healthy controls,” Infection and Immunity, vol. 62, pp. 5673–5678, 1994.
[62]  F. Ruscetti, L. Varesio, A. Ochoa, and J. Ortaldo, “Pleiotropic effects of transforming growth factor-β on cells of the immune system,” Annals of the New York Academy of Sciences, vol. 685, pp. 488–500, 1993.
[63]  R. P. Numerof, F. R. Aronson, and J. W. Mier, “IL-2 stimulates the production of IL-1α and IL-1β by human peripheral blood mononuclear cells,” Journal of Immunology, vol. 141, no. 12, pp. 4250–4257, 1988.
[64]  T. M. Lasco, L. Cassone, H. Kamohara, T. Yoshimura, and D. N. McMurray, “Evaluating the role of tumor necrosis factor-alpha in experimental pulmonary tuberculosis in the guinea pig,” Tuberculosis, vol. 85, pp. 254–258, 2005.
[65]  D. J. Grainger, K. Heathcote, M. Chiano, et al., “Genetic control of the circulating concentration of transforming growth factor type beta1,” Human Molecular Genetics, vol. 8, pp. 93–97, 1999.
[66]  A. M. Dunning, P. D. Ellis, S. McBride et al., “A transforming growth factorβ1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer,” Cancer Research, vol. 63, no. 10, pp. 2610–2615, 2003.
[67]  M. Yokota, S. Ichihara, T. L. Lin, N. Nakashima, and Y. Yamada, “Association of a T29→C polymorphism of the transforming growth factor- β1 gene with genetic susceptibility to myocardial infarction in Japanese,” Circulation, vol. 101, no. 24, pp. 2783–2787, 2000.
[68]  J. S. Chang, J. F. Huggett, K. Dheda, L. U. Kim, A. Zumla, and G. A. W. Rook, “Myobacterium tuberculosis induces selective up-regulation of TLRs in the mononuclear leukocytes of patients with active pulmonary tuberculosis,” Journal of Immunology, vol. 176, no. 5, pp. 3010–3018, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133