Venous thromboembolism (VTE) is a common complication after total hip and total knee arthroplasty. Currently used methods of VTE prophylaxis after these procedures have important limitations, including parenteral administration, and unpredictable plasma levels requiring frequent monitoring and dose adjustment leading to decreased patient compliance with recommended guidelines. New oral anticoagulants have been demonstrated in clinical trials to be equally efficacious to enoxaparin and allow for fixed dosing without the need for monitoring. Rivaroxaban is one of the new oral anticoagulants and is a direct factor Xa inhibitor that has demonstrated superior efficacy to that of enoxaparin. However, the data also suggest that rivaroxaban has an increased risk of bleeding compared to enoxaparin. This paper reviews the available data on the efficacy and safety of rivaroxaban for VTE prophylaxis after total hip and total knee arthroplasty. 1. Introduction Venous thromboembolism (VTE) is a common complication after total hip arthroplasty (THA) and total knee arthroplasty (TKA). Without anticoagulant prophylaxis, symptomatic deep venous thrombosis (DVT) occurs in approximately 15%–30% of the patients undergoing THA and TKA [1, 2]. Patients undergoing TKA are at higher risk for developing DVT; however, the rate of symptomatic DVT is higher after THA [1, 3, 4]. With evolving surgical technique, and methods of preventing VTE, the rate of VTE has decreased over time [1]. Using currently accepted methods of VTE prophylaxis, the rate of symptomatic DVT is approximately 1%–3%, and the rate of pulmonary embolism (PE) is approximately 0.2%–1.1% [2, 5–8]. The efficacy of VTE prophylaxis must be weighed against the risk of bleeding complications for the patients. The most commonly used VTE chemoprophylaxes after THA and TKA are low-molecular-weight heparin (LMWH), adjusted-dose warfarin with a targeted INR of 2-3, fondaparinux, or aspirin [2]. Current VTE prophylaxis regimens have significant shortcomings. Warfarin has a slow onset of action and has a narrow therapeutic window requiring frequent monitoring. Patients taking warfarin have only a 33% compliance rate and are frequently outside the targeted INR range increasing the risk of both bleeding and VTE [9, 10]. Low-molecular-weight heparin (LMWH) and fondaparinux must be administered parenterally, which requires time and cost. Patients are less compliant with administration of these drugs due to these barriers. One study reported only 75% continued the medication after discharge [9]. However, both warfarin and LMWH have
References
[1]
K. H. Xing, G. Morrison, W. Lim, J. Douketis, A. Odueyungbo, and M. Crowther, “Has the incidence of deep vein thrombosis in patients undergoing total hip/knee arthroplasty changed over time? A systematic review of randomized controlled trials,” Thrombosis Research, vol. 123, no. 1, pp. 24–34, 2008.
[2]
Y. Falck-Ytter, C. W. Francis, N. A. Johanson et al., “Prevention of VTE in orthopedic surgery patients. Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines,” Chest, vol. 141, supplement, no. 2, pp. e278S–e325S, 2012.
[3]
M. H. Huo, D. L. Spencer, B. J. Borah et al., “Post-discharge venous thromboembolism and bleeding in a large cohort of patients undergoing total hip or total knee arthroplasty,” Journal of Clinical Outcomes Management, vol. 19, no. 8, pp. 355–363, 2012.
[4]
J.-M. Januel, G. Chen, C. Ruffieux et al., “Symptomatic in-hospital deep vein thrombosis and pulmonary embolism following hip and knee arthroplasty among patients receiving recommended prophylaxis: a systematic review,” Journal of the American Medical Association, vol. 307, no. 3, pp. 294–303, 2012.
[5]
R. H. White, H. Zhou, and P. S. Romano, “Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures,” Thrombosis and Haemostasis, vol. 90, no. 3, pp. 446–455, 2003.
[6]
M. Khatod, M. C. Inacio, S. A. Bini, and E. W. Paxton, “Prophylaxis against pulmonary embolism in patients undergoing total hip arthroplasty,” Journal of Bone and Joint Surgery, vol. 93, no. 19, pp. 1767–1772, 2011.
[7]
S. S. Jameson, S. C. Charman, P. J. Gregg, M. R. Reed, and J. H. van der Meulen, “The effect of aspirin and low-molecular-weight heparin on venous thromboembolism after hip replacement: a non-randomised comparison from information in the National Joint Registry,” Journal of Bone and Joint Surgery, vol. 93 B, no. 11, pp. 1465–1470, 2011.
[8]
B. T. Bj?rnar?, T. E. Gudmundsen, and O. E. Dahl, “Frequency and timing of clinical venous thromboembolism after major joint surgery,” Journal of Bone and Joint Surgery, vol. 88, no. 3, pp. 386–391, 2006.
[9]
R. J. Friedman, A. S. Gallus, F. D. Cushner, G. FitzGerald, and F. A. Anderson Jr., “Physician compliance with guidelines for deep-vein thrombosis prevention in total hip and knee arthroplasty,” Current Medical Research and Opinion, vol. 24, no. 1, pp. 87–97, 2008.
[10]
P. Schuringa and D. Yen, “Home prophylactic warfarin anticoagulation program after hip and knee arthroplasty,” Canadian Journal of Surgery, vol. 42, no. 5, pp. 360–362, 1999.
[11]
D. Warwick, R. J. Friedman, G. Agnelli et al., “Insufficient duration of venous thromboembolism prophylaxis after total hip or knee replacement when compared with the time course of thromboembolic events: findings from the Global Orthopaedic Registry,” Journal of Bone and Joint Surgery B, vol. 89, no. 6, pp. 799–807, 2007.
[12]
M. R. Lassen, G. E. Raskob, A. Gallus, G. Pineo, D. Chen, and R. J. Portman, “Apixaban or enoxaparin for thromboprophylaxis after knee replacement,” The New England Journal of Medicine, vol. 361, no. 6, pp. 594–604, 2009, Erratum in: The New England Journal of Medicine, vol. 361, no. 18, p.1814, 2009.
[13]
M. R. Lassen, G. E. Raskob, A. Gallus, G. Pineo, D. Chen, and P. Hornick, “Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-blind trial,” The Lancet, vol. 375, no. 9717, pp. 807–815, 2010.
[14]
M. R. Lassen, A. Gallus, G. E. Raskob, G. Pineo, D. Chen, and L. M. Ramirez, “Apixaban versus enoxaparin for thromboprophylaxis after hip replacement,” The New England Journal of Medicine, vol. 363, no. 26, pp. 2487–2498, 2010.
[15]
B. I. Eriksson, O. E. Dahl, N. Rosencher et al., “Oral dabigatran etexilate vs. subcutaneous enoxaparin for the prevention of venous thromboembolism after total knee replacement: the RE-MODEL randomized trial,” Journal of Thrombosis and Haemostasis, vol. 5, no. 11, pp. 2178–2185, 2007.
[16]
B. I. Eriksson, O. E. Dahl, N. Rosencher et al., “Dabigatran etexilate versus enoxaparin for prevention of venous thromboembolism after total hip replacement: a randomised, double-blind, non-inferiority trial,” The Lancet, vol. 370, no. 9591, pp. 949–956, 2007, Erratum in: The Lancet, vol. 370, no. 9604, p.2004, 2007.
[17]
RE-MOBILIZE Writing Committee, J. S. Ginsberg, B. L. Davidson et al., “Oral thrombin inhibitor dabigatran etexilate vs North American enoxaparin regimen for prevention of venous thromboembolism after knee arthroplasty surgery,” Journal of Arthroplasty, vol. 24, no. 1, pp. 1–9, 2009.
[18]
B. I. Eriksson, L. C. Borris, R. J. Friedman et al., “Rivaroxaban versus enoxaparin for thromboprophylaxis after hip arthroplasty,” The New England Journal of Medicine, vol. 358, no. 26, pp. 2765–2775, 2008.
[19]
A. K. Kakkar, B. Brenner, O. E. Dahl et al., “Extended duration rivaroxaban versus short-term enoxaparin for the prevention of venous thromboembolism after total hip arthroplasty: a double-blind, randomised controlled trial,” The Lancet, vol. 372, no. 9632, pp. 31–39, 2008.
[20]
M. R. Lassen, W. Ageno, L. C. Borris et al., “Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty,” The New England Journal of Medicine, vol. 358, no. 26, pp. 2776–2786, 2008.
[21]
A. G. Turpie, M. R. Lassen, B. L. Davidson et al., “Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomised trial,” The Lancet, vol. 373, no. 9676, pp. 1673–1680, 2009.
[22]
M. V. Huisman, D. J. Quinlan, O. E. Dahl, and S. Schulman, “Enoxaparin versus Dabigatran or rivaroxaban for thromboprophylaxis after hip or knee arthroplasty: results of separate pooled analyses of phase III multicenter randomized trials,” Circulation, vol. 3, no. 6, pp. 652–660, 2010.
[23]
V. Trkulja and R. Kolund?ic, “Rivaroxaban vs dabigatran for thromboprophylaxis after joint-replacement surgery: exploratory indirect comparison based on metaanalysis of pivotal clinical trials,” Croatian Medical Journal, vol. 51, no. 2, pp. 113–123, 2010.
B. I. Eriksson, D. J. Quinlan, and J. I. Weitz, “Comparative pharmacodynamics and pharmacokinetics of oral direct thrombin and factor Xa inhibitors in development,” Clinical Pharmacokinetics, vol. 48, no. 1, pp. 1–22, 2009.
[26]
D. Kubitza, M. Becka, W. Mueck et al., “Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct Factor Xa inhibitor,” British Journal of Clinical Pharmacology, vol. 70, no. 5, pp. 703–712, 2010.
[27]
D. Kubitza, M. Becka, M. Zuehlsdorf, and W. Mueck, “Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects,” Journal of Clinical Pharmacology, vol. 47, no. 2, pp. 218–226, 2008, Erratum in:Journal of Clinical Pharmacology, vol. 48, no. 11, p.1366–1367, 2008.
[28]
R. J. Friedman, “Novel oral anticoagulants for VTE prevention in orthopedic surgery: overview of phase 3 trials,” Orthopedics, vol. 34, no. 10, pp. 795–804, 2011.
[29]
A. G. Turpie, M. R. Lassen, A. K. Kakkar et al., “Pooled analysis of four studies of rivaroxaban: effect on symptomatic events and bleeding and the influence of clinically relevant patient subgroups,” Chest, vol. 136, meeting abstracts, p. 144, 2009.
[30]
A. G. Turpie, M. R. Lassen, B. I. Eriksson et al., “Rivaroxaban for the prevention of venous thromboembolism after hip or knee arthroplasty: pooled analysis of four studies,” Thrombosis and Haemostasis, vol. 105, no. 3, pp. 444–453, 2011.
[31]
N. G. Espada, R. G. Merino, and T. C. González, “Dabigatran, Rivaroxaban and Apixaban versus Enoxaparin for thomboprophylaxis after total knee or hip arthroplasty: pool-analysis of phase III randomized clinical trials,” Thrombosis Research, vol. 130, no. 2, pp. 183–191, 2012.
[32]
C. D. Jensen, A. Steval, P. F. Partington, M. R. Reed, and S. D. Muller, “Return to theatre following total hip and knee replacement, before and after the introduction of rivaroxaban: a retrospective cohort study,” Journal of Bone and Joint Surgery B, vol. 93, no. 1, pp. 91–95, 2011.
[33]
J. Lützner, L. Donath, L. Tittl et al., “Efficacy and safety of thromboprophylaxis with low-molecular-weight heparin or rivaroxaban in hip and knee replacement surgery: findings from the ORTHO-TEP registry,” Thrombosis and Haemostasis, vol. 109, no. 1, pp. 154–163, 2013.