全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Targeting Oxidative Stress Injury after Ischemic Stroke in Conscious Rats: Limited Benefits with Apocynin Highlight the Need to Incorporate Long Term Recovery

DOI: 10.1155/2013/648061

Full-Text   Cite this paper   Add to My Lib

Abstract:

NADPH oxidase is a major source of superoxide anion following stroke and reperfusion. This study evaluated the effects of apocynin, a known antioxidant and inhibitor of Nox2 NADPH, on neuronal injury and cell-specific responses to stroke induced in the conscious rat. Apocynin treatment (50?mg/kg i.p.) commencing 1 hour prior to stroke and 24 and 48 hours after stroke significantly reduced infarct volume in the cortex by ~?60%, but had no effect on striatal damage or neurological deficits. In situ detection of reactive oxygen species (ROS) using dihydroethidium fluorescence revealed that increased ROS detected in OX-42 positive cells following ischemia was reduced in apocynin-treated rats by ~?51%, but surprisingly increased in surrounding NeuN positive cells of the same rats by ~?27%, in comparison to the contralateral hemisphere. Reduced ROS from activated microglia/macrophages treated with apocynin was associated with reduced Nox2 immunoreactivity without change to the number of cells. These findings confirm the protective effects of apocynin and indicate a novel mechanism via reduced Nox2 expression. We also reveal compensatory changes in neuronal ROS generation as a result of Nox2 inhibition and highlight the need to assess long term individual cell responses to inhibitors of oxidative stress. 1. Introduction Oxidative stress contributes to brain reperfusion injury following stroke [1]. Well-established sources of reactive oxygen species (ROS) generation in the brain following injury include intracellular organelles (especially mitochondria), invading neutrophils, activated microglia/macrophages [2], and cerebral blood vessels [3]. Recently, we have also shown that neurons themselves generate large amounts of superoxide following transient stroke, an effect that contributes to the progression of injury over time [4]. Several drugs that target oxidative stress have been developed as potential therapies for ischemic stroke. Spin trap free radical inhibitors and antioxidants, including Ebselen (a glutathione peroxidase mimetic); NXY 059 (a nitrone-based free radical trapping agent); edaravone (a free radical scavenger) can reduce infarct volume in rodent reperfusion models of ischemic stroke, supporting the contribution of reactive oxygen species to ischemic damage following reperfusion [5]. These antioxidants, however, target reactive oxygen species only after they are formed and do not address the specific process by which these toxic molecules are generated. This is important for reactive oxygen species can rapidly cause damage before they are

References

[1]  B. Schaller, “Prospects for the future: the role of free radicals in the treatment of stroke,” Free Radical Biology and Medicine, vol. 38, no. 4, pp. 411–425, 2005.
[2]  S. P. Green, B. Cairns, J. Rae et al., “Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 4, pp. 374–384, 2001.
[3]  A. A. Miller, G. J. Dusting, C. L. Roulston, and C. G. Sobey, “NADPH-oxidase activity is elevated in penumbral and non-ischemic cerebral arteries following stroke,” Brain Research, vol. 1111, no. 1, pp. 111–116, 2006.
[4]  S. K. McCann, G. J. Dusting, and C. L. Roulston, “Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats,” Journal of Neuroscience Research, vol. 86, no. 11, pp. 2524–2534, 2008.
[5]  C. X. Wang and A. Shuaib, “Neuroprotective effects of free radical scavengers in stroke,” Drugs and Aging, vol. 24, no. 7, pp. 537–546, 2007.
[6]  F. Jiang, G. R. Drummond, and G. J. Dusting, “Suppression of oxidative stress in the endothelium and vascular wall,” Endothelium, vol. 11, no. 2, pp. 79–88, 2004.
[7]  K. K. Griendling, D. Sorescu, and M. Ushio-Fukai, “NAD(P)H oxidase: role in cardiovascular biology and disease,” Circulation Research, vol. 86, no. 5, pp. 494–501, 2000.
[8]  A. A. Miller, G. R. Drummond, H. H. Schmidt, and C. G. Sobey, “NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries,” Circulation Research, vol. 97, no. 10, pp. 1055–1062, 2005.
[9]  P. Vallet, Y. Charnay, K. Steger et al., “Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia,” Neuroscience, vol. 132, no. 2, pp. 233–238, 2005.
[10]  E. C. Chan, F. Jiang, H. M. Peshavariya, and G. J. Dusting, “Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering,” Pharmacology and Therapeutics, vol. 122, no. 2, pp. 97–108, 2009.
[11]  R. Vlahos, J. Stambas, S. Bozinovski, B. R. Broughton, G. R. Drummond, and S. Selemidis, “Inhibition of Nox2 oxidase activity ameliorates influenza a virus-induced lung inflammation,” PLoS Pathogens, vol. 7, no. 2, Article ID e1001271, 2011.
[12]  L. L. Tang, K. Ye, X. F. Yang, and J. S. Zheng, “Apocynin attenuates cerebral infarction after transient focal ischaemia in rats,” Journal of International Medical Research, vol. 35, no. 4, pp. 517–522, 2007.
[13]  X. N. Tang, B. Cairns, N. Cairns, and M. A. Yenari, “Apocynin improves outcome in experimental stroke with a narrow dose range,” Neuroscience, vol. 154, no. 2, pp. 556–562, 2008.
[14]  K. A. Jackman, A. A. Miller, T. M. De Silva, P. J. Crack, G. R. Drummond, and C. G. Sobey, “Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice,” British Journal of Pharmacology, vol. 156, no. 4, pp. 680–688, 2009.
[15]  J. K. Callaway, M. J. Knight, D. J. Watkins, P. M. Beart, and B. Jarrott, “Delayed treatment with AM-36, a novel neuroprotective agent, reduces neuronal damage after endothelin-1-induced middle cerebral artery occlusion in conscious rats,” Stroke, vol. 30, no. 12, pp. 2704–2712, 1999.
[16]  C. L. Roulston, J. K. Callaway, B. Jarrott, O. L. Woodman, and G. J. Dusting, “Using behaviour to predict stroke severity in conscious rats: post-stroke treatment with 3′, 4′-dihydroxyflavonol improves recovery,” European Journal of Pharmacology, vol. 584, no. 1, pp. 100–110, 2008.
[17]  M. Yamamoto, A. Tamura, T. Kirino, M. Shimizu, and K. Sano, “Behavioral changes after focal cerebral ischemia by left middle cerebral artery occlusion in rats,” Brain Research, vol. 452, no. 1-2, pp. 323–328, 1988.
[18]  J. K. Callaway, M. J. Knight, D. J. Watkins, P. M. Beart, B. Jarrott, and P. M. Delaney, “A novel, rapid, computerised method for quantitation of neuronal damage in a rat model of stroke,” Journal of Neuroscience Methods, vol. 102, no. 1, pp. 53–60, 2000.
[19]  H. Shichinohe, S. Kuroda, H. Yasuda et al., “Neuroprotective effects of the free radical scavenger Edaravone (MCI-186) in mice permanent focal brain ischemia,” Brain Research, vol. 1029, no. 2, pp. 200–206, 2004.
[20]  C. L. Roulston, A. J. Lawrence, R. E. Widdop, and B. Jarrott, “Minocycline treatment attenuates microglia activation and non-angiotensin II [125I] CGP42112 binding in brainstem following nodose ganglionectomy,” Neuroscience, vol. 135, no. 4, pp. 1241–1253, 2005.
[21]  Michael J. O'Neill and Clemens James A., “Rodent Models of focal cerebral ischemia,” in Current Protocols in Neuroscience, chapter 9, unit 9.6, pp. 1–32, John Wiley & Sons, New York, NY, USA, 2000.
[22]  M. S. K. C. L. Roulston, R. M. Weston, and B. Jarrott, “Animal models of stroke for preclinical drug development: a comparative study of flavonols for cytoprotection,” in Translational Stroke Research, P. A. Lapchak and J. H. Zhang, Eds., Springer, Berlin, Germany, 2011.
[23]  D. Virley, S. J. Hadingham, J. C. Roberts et al., “A new primate model of focal stroke: endothelin-1-induced middle cerebral artery occlusion and reperfusion in the common marmoset,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 1, pp. 24–41, 2004.
[24]  M. Hagerdal, F. A. Welsh, and M. M. Keykhah, “Protective effects of combinations of hypothermia and barbiturates in cerebral hypoxia in the rat,” Anesthesiology, vol. 49, no. 3, pp. 165–169, 1978.
[25]  A. Bhardwaj, T. Brannan, and J. Weinberger, “Pentobarbital inhibits extracellular release of dopamine in the ischemic striatum,” Journal of Neural Transmission, vol. 82, no. 2, pp. 111–117, 1990.
[26]  C. D. Fütterer, M. H. Maurer, A. Schmitt, R. E. Feldmann, W. Kuschinsky, and K. F. Waschke, “Alterations in rat brain proteins after desflurane anesthesia,” Anesthesiology, vol. 100, no. 2, pp. 302–308, 2004.
[27]  H. Chen, Y. S. Song, and P. H. Chan, “Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 7, pp. 1262–1272, 2009.
[28]  R. M. Weston, N. M. Jones, B. Jarrott, and J. K. Callaway, “Inflammatory cell infiltration after endothelin-1-induced cerebral ischemia: histochemical and myeloperoxidase correlation with temporal changes in brain injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 1, pp. 100–114, 2007.
[29]  J. Hur, P. Lee, M. J. Kim, Y. Kim, and Y. W. Cho, “Ischemia-activated microglia induces neuronal injury via activation of gp91phox NADPH oxidase,” Biochemical and Biophysical Research Communications, vol. 391, no. 3, pp. 1526–1530, 2010.
[30]  J. M. Simons, B. A. 't Hart, T. R. A. M. Ip Vai Ching, H. Van Dijk, and R. P. Labadie, “Metabolic activation of natural phenols into selective oxidative burst agonists by activated human neurophils,” Free Radical Biology and Medicine, vol. 8, no. 3, pp. 251–258, 1990.
[31]  E. Van den Worm, C. J. Beukelman, A. J. J. Van den Berg, B. H. Kroes, R. P. Labadie, and H. Van Dijk, “Effects of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils,” European Journal of Pharmacology, vol. 433, no. 2-3, pp. 225–230, 2001.
[32]  S. Heumüller, S. Wind, E. Barbosa-Sicard et al., “Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant,” Hypertension, vol. 51, no. 2, pp. 211–217, 2008.
[33]  J. Stolk, T. J. Hiltermann, J. H. Dijkman, and A. J. Verhoeven, “Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol,” The American Journal of Respiratory Cell and Molecular Biology, vol. 11, no. 1, pp. 95–102, 1994.
[34]  O. J. Dodd and D. B. Pearse, “Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion lung injury,” The American Journal of Physiology, vol. 279, no. 1, pp. H303–H312, 2000.
[35]  M. Vejra?ka, R. Mí?ek, and S. ?típek, “Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells,” Biochimica et Biophysica Acta, vol. 1722, no. 2, pp. 143–147, 2005.
[36]  P. S. Green, A. J. Mendez, J. S. Jacob et al., “Neuronal expression of myeloperoxidase is increased in Alzheimer's disease,” Journal of Neurochemistry, vol. 90, no. 3, pp. 724–733, 2004.
[37]  C. Kleinschnitz, H. Grund, K. Wingler et al., “Post-stroke inhibition of induced NADPH Oxidase type 4 prevents oxidative stress and neurodegeneration,” PLoS Biology, vol. 8, no. 9, Article ID e1000479, 2010.
[38]  H. Sheng, W. Yang, S. Fukuda et al., “Long-term neuroprotection from a potent redox-modulating metalloporphyrin in the rat,” Free Radical Biology and Medicine, vol. 47, no. 7, pp. 917–923, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133