全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Impact of Experimental Preconditioning Using Vascular Endothelial Growth Factor in Stroke and Subarachnoid Hemorrhage

DOI: 10.1155/2013/948783

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vascular endothelial growth factor (VEGF) stimulating angiogenesis was shown to be a potential novel therapeutic approach for the treatment of ischemic vascular diseases. The goal of the present study was to examine whether transfection of VEGF before occurrence of major stroke (part I) and cerebral vasospasm after experimental subarachnoid hemorrhage (SAH; part II) develops neuroprotective qualities. A total of 25 (part I) and 26 (part II) brains were analyzed, respectively. In part one, a significant reduction of infarct volume in the VEGF-treated stroke animals (43% reduction, ) could be detected. In part two, significant vasospasm was induced in all hemorrhage groups . Analyzing microperfusion, a significant higher amount of perfused vessels could be detected , whereas no significant effect could be detected towards macroperfusion. Histologically, no infarctions were observed in the VEGF-treated SAH group and the sham-operated group. Minor infarction in terms of vasospasm-induced small lesions could be detected in the control vector transduced group and saline-treated group . The present study demonstrates the preconditioning impact of systemic intramuscular VEGF injection in animals after major stroke and induced severe vasospasm after SAH. 1. Introduction Cerebral vasospasm and delayed cerebral ischemia contribute the major part of secondary morbidity and mortality after severe subarachnoid hemorrhage (SAH) [1–5]. Despite the current treatment strategies, the rate of related permanent disability is estimated at 10% to 20% [6–9]. Vascular endothelial growth factor (VEGF) is involved in neurogenesis, inhibition of apoptosis, learning, and memory [10]. It can directly promote neuroprotection, but first of all VEGF is the main factor responsible for angiogenesis whereby an indirect neuroprotection is discussed. VEGF expression is increased during cerebral ischemia in humans and animals [11]. However, endogenous VEGF seems to be insufficient to protect the brain from ischemic injury completely. Interestingly, it could be shown that exogenous administrated VEGF induces angiogenic changes that result in a reduction of cerebral ischemic injury [12, 13]. For this reason VEGF was adopted as a potential novel therapeutic approach for the treatment of ischemic vascular disease, particularly in ischemic stroke [14–18]. The aim of the present experimental study was to examine the effect of systemic overexpression of VEGF prior to stroke and SAH with regard to cerebral infarction, vasospasm, and perfusion. 2. Material and Methods This study was carried out in

References

[1]  E. C. Haley Jr., N. F. Kassell, W. M. Alves et al., “Phase II trial of tirilazad in aneurysmal subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study,” Journal of Neurosurgery, vol. 82, no. 5, pp. 786–790, 1995.
[2]  E. C. Haley Jr., N. F. Kassell, C. Apperson-Hansen, M. H. Maile, and W. M. Alves, “A randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in North America,” Journal of Neurosurgery, vol. 86, no. 3, pp. 467–474, 1997.
[3]  N. F. Kassell, J. C. Torner, E. C. Haley Jr., J. A. Jane, H. P. Adams, and G. L. Kongable, “The International Cooperative Study on the Timing of Aneurysm Surgery. Part 1: overall management results,” Journal of Neurosurgery, vol. 73, no. 1, pp. 18–36, 1990.
[4]  G. Lanzino and N. F. Kassell, “Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America,” Journal of Neurosurgery, vol. 90, no. 6, pp. 1018–1024, 1999.
[5]  G. Lanzino, N. F. Kassell, N. W. C. Dorsch et al., “Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part I. A cooperative study in Europe, Australia, New Zealand, and South Africa,” Journal of Neurosurgery, vol. 90, no. 6, pp. 1011–1017, 1999.
[6]  J. I. Suarez, R. W. Tarr, and W. R. Selman, “Aneurysmal subarachnoid hemorrhage,” The New England Journal of Medicine, vol. 354, no. 4, pp. 387–396, 2006.
[7]  M. M. Treggiari, B. Walder, P. M. Suter, and J. A. Romand, “Systematic review of the prevention of delayed ischemic neurological deficits with hypertension, hypervolemia, and hemodilution therapy following subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 98, no. 5, pp. 978–984, 2003.
[8]  G. W. Weyer, C. P. Nolan, and R. L. Macdonald, “Evidence-based cerebral vasospasm management,” Neurosurgical Focus, vol. 21, no. 3, p. E8, 2006.
[9]  J. W. Hop, G. J. E. Rinkel, A. Algra, and J. van Gijn, “Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review,” Stroke, vol. 28, no. 3, pp. 660–664, 1997.
[10]  L. Cao, X. Jiao, D. S. Zuzga et al., “VEGF links hippocampal activity with neurogenesis, learning and memory,” Nature Genetics, vol. 36, no. 8, pp. 827–835, 2004.
[11]  J. Krupinski, J. Kaluza, P. Kumar, S. Kumar, and J. M. Wang, “Role of angiogenesis in patients with cerebral ischemic stroke,” Stroke, vol. 25, no. 9, pp. 1794–1798, 1994.
[12]  Y. Feng, P. G. Rhodes, and A. J. Bhatt, “Neuroprotective effects of vascular endothelial growth factor following hypoxic ischemic brain injury in neonatal rats,” Pediatric Research, vol. 64, no. 4, pp. 370–374, 2008.
[13]  E. Storkebaum, D. Lambrechts, and P. Carmeliet, “VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection,” BioEssays, vol. 26, no. 9, pp. 943–954, 2004.
[14]  A. Vezzani, “VEGF as a target for neuroprotection,” Epilepsy Currents, vol. 8, no. 5, pp. 135–137, 2008.
[15]  A. Wick, W. Wick, J. Waltenberger, M. Weller, J. Dichgans, and J. B. Schulz, “Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt,” Journal of Neuroscience, vol. 22, no. 15, pp. 6401–6407, 2002.
[16]  S. D. Croll and S. J. Wiegand, “Vascular growth factors in cerebral ischemia,” Molecular Neurobiology, vol. 23, no. 2-3, pp. 121–135, 2001.
[17]  P. S. Manoonkitiwongsa, R. L. Schultz, D. B. McCreery, E. F. Whitter, and P. D. Lyden, “Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 6, pp. 693–702, 2004.
[18]  W. Zhu, Y. Mao, Y. Zhao et al., “Transplantation of vascular endothelial growth factor-transfected neural stem cells into the rat brain provides neuroprotection after transient focal cerebral ischemia,” Neurosurgery, vol. 57, no. 2, pp. 325–333, 2005.
[19]  J. Koizumi, Y. Yoshida, T. Nakazawa, and G. Ooneda, “Experimental studies of ischemic brain edema, I: a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area,” Japanes Journal of Stroke, vol. 8, pp. 1–8, 1986.
[20]  D. H?nggi, S. Eicker, K. Beseoglu et al., “Dose-related efficacy of a continuous intracisternal nimodipine treatment on cerebral vasospasm in the rat double subarachnoid hemorrhage model,” Neurosurgery, vol. 64, no. 6, pp. 1155–1159, 2009.
[21]  G. Grasso, “An overview of new pharmacological treatments for cerebrovascular dysfunction after experimental subarachnoid hemorrhage,” Brain Research Reviews, vol. 44, no. 1, pp. 49–63, 2004.
[22]  J. F. Megyesi, B. Vollrath, D. A. Cook, and J. M. Findlay, “In vivo animal models of cerebral vasospasm: a review,” Neurosurgery, vol. 46, no. 2, pp. 448–461, 2000.
[23]  J. B. Bederson, L. H. Pitts, and M. Tsuji, “Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination,” Stroke, vol. 17, no. 3, pp. 472–476, 1986.
[24]  B. Turowski, D. H?nggi, A. Beck, et al., “New angiographic measurement tool for analysis of small cerebral vessels: application to a subarachnoid haemorrhage model in the rat,” Neuroradiology, vol. 49, no. 2, pp. 129–137, 2007.
[25]  H. Schüller, M. Standop, A. Sobbe, N. Leipner, and T. Harder, “Parametric visualization of cerebral perfusion by intravenous digital angiography,” RoFo Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin, vol. 146, no. 3, pp. 342–347, 1987.
[26]  J. Jo?ko, “Cerebral angiogenesis and expression of VEGF after subarachnoid hemorrhage (SAH) in rats,” Brain Research, vol. 981, no. 1-2, pp. 58–69, 2003.
[27]  D. F. Emerich, E. Silva, O. Ali et al., “Injectable VEGF hydrogels produce near complete neurological and anatomical protection following cerebral ischemia in rats,” Cell Transplantation, vol. 19, no. 9, pp. 1063–1071, 2010.
[28]  S. Brecht, K. Schwarze, V. Waetzig et al., “Changes in peptidyl-prolyl cis/trans isomerase activity and FK506 binding protein expression following neuroprotection by FK506 in the ischemic rat brain,” Neuroscience, vol. 120, no. 4, pp. 1037–1048, 2003.
[29]  G. F. Prunell, T. Mathiesen, N. A. Svendgaard et al., “Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat,” Neurosurgery, vol. 54, no. 2, pp. 426–437, 2004.
[30]  J. Verlooy, J. Van Reempts, M. Haseldonckx, M. Borgers, and P. Selosse, “The course of vasospasm following subarachnoid haemorrhage in rats. A vertebrobasilar angiographic study,” Acta Neurochirurgica, vol. 117, no. 1-2, pp. 48–52, 1992.
[31]  M. A. Aladag, Y. Turkoz, E. Sahna, H. Parlakpinar, and M. Gul, “The attenuation of vasospasm by using a SOD mimetic after experimental subarachnoidal haemorrhage in rats,” Acta Neurochirurgica, vol. 145, no. 8, pp. 673–677, 2003.
[32]  H. Vatter, S. Weidauer, J. Konczalla et al., “Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: clinical and neuroradiological assessment of the rat double hemorrhage model,” Neurosurgery, vol. 58, no. 6, pp. 1190–1197, 2006.
[33]  M. Longo, A. Blandino, G. Ascenti, G. K. Ricciardi, F. Granata, and S. Vinci, “Cerebral angiography in the rat with mammographic equipment: a simple, cost-effective method for assessing vasospasm in experimental subarachnoid haemorrhage,” Neuroradiology, vol. 44, no. 8, pp. 689–694, 2002.
[34]  T. J. Delgado, J. Brismar, and N. A. Svendgaard, “Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries,” Stroke, vol. 16, no. 4, pp. 595–602, 1985.
[35]  D. J. Boullin, V. Aitken, G. H. du Boulay, and P. Tagari, “The calibre of cerebral arteries of the rat studied by carotid angiography: a model system for studying the aetiology of human cerebral arterial constriction after aneurysmal rupture,” Neuroradiology, vol. 21, no. 5, pp. 245–252, 1981.
[36]  J. M. Krum, N. Mani, and J. M. Rosenstein, “Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury,” Experimental Neurology, vol. 212, no. 1, pp. 108–117, 2008.
[37]  Z. G. Zhang, L. Zhang, Q. Jiang et al., “VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain,” The Journal of Clinical Investigation, vol. 106, no. 7, pp. 829–838, 2000.
[38]  M. R. Harrigan, S. R. Ennis, S. E. Sullivan, and R. F. Keep, “Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume,” Acta Neurochirurgica, vol. 145, no. 1, pp. 49–53, 2003.
[39]  X. R. Zheng, S. S. Zhang, Y. J. Yang et al., “Adenoviral vector-mediated transduction of VEGF improves neural functional recovery after hypoxia-ischemic brain damage in neonatal rats,” Brain Research Bulletin, vol. 81, no. 4-5, pp. 372–377, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133