Objective. To determine the National Institutes of Health Stroke Scale’s (NIHSS’s) association with upper extremity (UE) impairment and functional outcomes. Design. Secondary, retrospective analysis of randomized controlled trial data. Setting. Not applicable. Participants. 146 subjects with stable, chronic stroke-induced hemiparesis. Intervention. The NIHSS, the UE Fugl-Meyer (FM), and the Arm Motor Ability Test (AMAT) were administered prior to their participation in a multicenter randomized controlled trial. Main Outcome Measures. The NIHSS, FM, and AMAT. Results. The association between the NIHSS and UE impairment was statistically significant but explained less than 4% of the variance among UE FM scores. The association between NIHSS total score and function as measured by the AMAT was not statistically significant . Subjects scoring a “zero” on the NIHSS exhibited discernible UE motor deficits and varied scores on the UE FM and AMAT. Conclusion. While being used in stroke trials, the NIHSS may have limited ability to discriminate between treatment responses, even when only a relatively narrow array of impairment levels exists among patients. Given these findings, NIHSS use should be restricted to acute stroke studies and clinical settings with the goal of reporting stroke severity. 1. Introduction Upper extremity (UE) hemiparesis remains one of the most frequent stroke-induced impairments [1] and considerably undermines performance of valued activities. Yet, despite weeks of rehabilitation, 50% of patients retain some degree of UE weakness [2] and up to seventy percent remain unable to functionally use their paretic UEs [3] in the months after stroke. Scores on the National Institute of Health Stroke Scale [4] (NIHSS) are associated with stroke outcomes [5–7], causing the NIHSS to be recommended for determining “appropriate treatment and predicting patient outcome” [8]. However, the “functional” measures with which the NIHSS has been associated in stroke trials [7, 9, 10] (e.g., Glasgow Coma Scale; Barthel Index) do not directly assess active UE movement or functional UE activity performance. For example, the Barthel Index ascertains the level of help that a patient requires to carry out various daily activities, but not the actual level of movement that the patient exhibits or how active movements conspire to facilitate participation in valued activities. These levels of help may be related to adaptive equipment use, available care partner support, or other factors, but do not tell the user how the client has actually responded to treatment
References
[1]
American Heart Association, Heart Disease and Stroke Statistics—2013 Update, American Heart Association, 2011.
[2]
M. Kelly-Hayes, A. Beiser, C. S. Kase, A. Scaramucci, R. B. D'agostino, and P. A. Wolf, “The influence of gender and age on disability following ischemic stroke: the framingham study,” Journal of Stroke and Cerebrovascular Diseases, vol. 12, no. 3, pp. 119–126, 2003.
[3]
G. Gresham, T. Fitzpatrick, P. Wolf, P. Mcnamara, W. Kannel, and T. Dawber , “Residual disability in survivors of stroke—the framingham study,” New England Journal of Medicine, vol. 293, no. 19, pp. 954–956, 1975.
[4]
P. Lyden, T. Brott, B. Tilley et al., “Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group,” Stroke, vol. 25, no. 11, pp. 2220–2226, 1994.
[5]
H. P. Adams Jr., P. H. Davis, E. C. Leira et al., “Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST),” Neurology, vol. 53, no. 1, pp. 126–131, 1999.
[6]
R. Ahmed, B. F. Zuberi, and S. Afsar, “Stroke scale score and early prediction of outcome after stroke,” Journal of the College of Physicians and Surgeons Pakistan, vol. 14, no. 5, pp. 267–269, 2004.
[7]
B. Ovbiagele and J. L. Saver, “Day-90 acute ischemic stroke outcomes can be derived from early functional activity level,” Cerebrovascular Diseases, vol. 29, no. 1, pp. 50–56, 2010.
“Randomised controlled trial of streptokinase, aspirin, and combination of both in treatment of acute ischaemic stroke. Multicentre Acute Stroke Trial—Italy (MAST-I) Group,” The Lancet, vol. 346, no. 8989, pp. 1509–1514, 1995.
[10]
P. Sandercock, J. M. Wardlaw, R. I. Lindley et al., “The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial,” The Lancet, vol. 379, no. 9834, pp. 2352–2363, 2012.
[11]
M. A. Naeser, C. L. Palumbo, M. N. Prete et al., “Visible changes in lesion borders on CT scan after five years poststroke, and long-term recovery in aphasia,” Brain and Language, vol. 62, no. 1, pp. 1–28, 1998.
[12]
E. M. Khedr and N. A.-E. Fetoh, “Short- and long-term effect of rTMS on motor function recovery after ischemic stroke,” Restorative Neurology and Neuroscience, vol. 28, no. 4, pp. 545–559, 2010.
[13]
J. Lokk, R. S. Roghani, and A. Delbari, “Effect of methylphenidate and/or levodopa coupled with physiotherapy on functional and motor recovery after stroke—a randomized, double-blind, placebo-controlled trial,” Acta Neurologica Scandinavica, vol. 123, no. 4, pp. 266–273, 2011.
[14]
W. T. Hsing, M. Imamura, K. Weaver, F. Fregni, and R. S. Azvedo Neto, “Clinical effects of scalp electrical acupuncture in stroke: a sham-controlled randomized clinical trial,” Journal of Alternative and Complementary Medicine, vol. 18, no. 4, pp. 341–346, 2012.
[15]
A. R. Fugl Meyer, L. Jaasko, I. Leyman, S. Olsson, and S. Steglind, “The post stroke hemiplegic patient. I. A method for evaluation of physical performance,” Scandinavian Journal of Rehabilitation Medicine, vol. 7, no. 1, pp. 13–31, 1975.
[16]
D. J. Gladstone, C. J. Danells, and S. E. Black, “The Fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties,” Neurorehabilitation and Neural Repair, vol. 16, no. 3, pp. 232–240, 2002.
[17]
B. Kopp, A. Kunkel, H. Flor et al., “The arm motor ability test: reliability, validity, and sensitivity to change of an instrument for assessing disabilities in activities of daily living,” Archives of Physical Medicine and Rehabilitation, vol. 78, no. 6, pp. 615–620, 1997.
[18]
S. J. Page, P. Levine, and A. Leonard, “Mental practice in chronic stroke: results of a randomized, placebo-controlled trial,” Stroke, vol. 38, no. 4, pp. 1293–1297, 2007.
[19]
S. J. Page, P. Levine, A. Leonard, J. P. Szaflarski, and B. M. Kissela, “Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial,” Physical Therapy, vol. 88, no. 3, pp. 333–340, 2008.
[20]
J. R. de Kroon, M. J. Ijzerman, G. J. Lankhorst, and G. Zilvold, “Electrical stimulation of the upper limb in stroke: stimulation of the extensors of the hand vs. alternate stimulation of flexors and extensors,” American Journal of Physical Medicine and Rehabilitation, vol. 83, no. 8, pp. 592–600, 2004.
[21]
R. Harvey and C. Winstein, “Design for the everest randomized trial of cortical stimulation and rehabilitation for arm function following stroke,” Neurorehabilitation and Neural Repair, vol. 23, no. 1, pp. 32–44, 2009.
[22]
P. W. Duncan, M. Propst, and S. G. Nelson, “Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident,” Physical Therapy, vol. 63, no. 10, pp. 1606–1610, 1983.
[23]
R. P. di Fabio and M. B. Badke, “Relationship of sensory organization to balance function in patients with hemiplegia,” Physical Therapy, vol. 70, no. 9, pp. 542–548, 1990.
[24]
B. Kopp, A. Kunkel, H. Flor et al., “The arm motor ability test: reliability, validity, and sensitivity to change of an instrument for assessing disabilities in activities of daily living,” Archives of Physical Medicine and Rehabilitation, vol. 78, no. 6, pp. 615–620, 1997.
[25]
R. Taylor, “Interpretation of the correlation coefficient: a basic review,” Journal of Diagnostic Medical Sonography, vol. 6, no. 1, pp. 35–39, 1990.