全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessing Adipogenic Potential of Mesenchymal Stem Cells: A Rapid Three-Dimensional Culture Screening Technique

DOI: 10.1155/2013/806525

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bone-marrow-derived mesenchymal stem cells (MSCs) have the potential to differentiate into a number of phenotypes, including adipocytes. Adipogenic differentiation has traditionally been performed in monolayer culture, and, while the expression of a fat-cell phenotype can be achieved, this culture method is labor and material intensive and results in only small numbers of fragile adherent cells, which are not very useful for further applications. Aggregate culture is a cell-culture technique in which cells are induced to form three-dimensional aggregates; this method has previously been used successfully, among others, to induce and study chondrogenic differentiation of MSCs. We have previously published an adaptation of the chondrogenic aggregate culture method to a 96-well plate format. Based on the success of this method, we have used the same format for the preparation of three-dimensional adipogenic cultures. The MSCs differentiate rapidly, the aggregates can be handled and processed for histologic and biochemical assays with ease, and the format offers significant savings in supplies and labor. As a differentiation assay, this method can distinguish between degrees of senescence and appears suitable for testing medium or drug formulations in a high-volume, high-throughput fashion. 1. Introduction Much of the research on adult mesenchymal stem cells (MSCs) has been done on bone-marrow-derived populations. First described by Owen and Friedenstein [1], and later more fully characterized by other groups, these cells possess, to some degree, and for a number of population doublings, the defining properties of stem cells, that is, the ability to self-renew and the potential to differentiate along one or more lineages under appropriate culture conditions [1–5]. The chondrogenic, osteogenic, and adipogenic lineages are well documented, but there are likely others [6–10]. The emerging and potentially useful properties of MSCs include their paracrine effects, which may augment the repair of damaged tissues, and their immunosuppressive abilities [11, 12]. With respect to the adipogenic lineage specifically, Mackay et al. have shown that human MSC-(hMSC-) derived adipocytes, express mRNA encoding for adipogenic transcription factors (PPARγ2, C/EBPα, and SREBP1), adipokines (adipsin, leptin, APM1, and angiotensinogen), and lipid-metabolizing agents (aP2 and LPL) by day 12 of differentiation and are thus highly analogous to subcutaneous adipocytes at this time point [13]. For most of the clinical applications envisioned, a very large number of MSCs will be

References

[1]  M. Owen and A. J. Friedenstein, “Stromal stem cells: marrow-derived osteogenic precursors,” Ciba Foundation Symposium, vol. 136, pp. 42–60, 1988.
[2]  M. F. Pittenger, J. D. Mosca, and K. R. McIntosh, “Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma,” Current Topics in Microbiology and Immunology, vol. 251, pp. 3–11, 2000.
[3]  M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999.
[4]  M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008.
[5]  C. Halleux, V. Sottile, J. A. Gasser, and K. Seuwen, “Multi-lineage potential of human mesenchymal stem cells following clonal expansion,” Journal of Musculoskeletetal and Neuronal Interactions, vol. 2, no. 1, pp. 71–76, 2001.
[6]  S. E. Haynesworth, J. Goshima, V. M. Goldberg, and A. I. Caplan, “Characterization of cells with osteogenic potential from human marrow,” Bone, vol. 13, no. 1, pp. 81–88, 1992.
[7]  S. E. Haynesworth, M. A. Baber, and A. I. Caplan, “Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha,” Journal of Cellular Physiology, vol. 166, no. 3, pp. 585–592, 1996.
[8]  S. P. Bruder, N. Jaiswal, and S. E. Haynesworth, “Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation,” Journal of Cellular Biochemistry, vol. 64, no. 2, pp. 278–294, 1997.
[9]  D. P. Lennon, S. E. Haynesworth, S. P. Bruder, N. Jaiswal, and A. I. Caplan, “Human and animal mesenchymal progenitor cells from bone marrow: identification of serum for optimal selection and proliferation,” In Vitro Cellular and Developmental Biology, vol. 32, no. 10, pp. 602–611, 1996.
[10]  L. Solchaga, V. M. Goldberg, R. Mishra, A. Caplan, and J. Welter, “FGF-2 modifies the gene expression profile of bone marrow-derived human mesenchymal stem cells,” Transactions of the Orthopaedic Research Society, vol. 29, p. 777, 2004.
[11]  J. J. Auletta, E. A. Zale, J. F. Welter, and L. A. Solchaga, “Fibroblast growth factor-2 enhances expansion of human bone marrow-derived mesenchymal stromal cells without diminishing their immunosuppressive potential,” Stem Cells International, vol. 2011, Article ID 235176, 10 pages, 2011.
[12]  A. I. Caplan and D. Correa, “The MSC: an injury drugstore,” Cell Stem Cell, vol. 9, no. 1, pp. 11–15, 2011.
[13]  D. L. Mackay, P. J. Tesar, L. N. Liang, and S. E. Haynesworth, “Characterizing medullary and human mesenchymal stem cell-derived adipocytes,” Journal of Cellular Physiology, vol. 207, no. 3, pp. 722–728, 2006.
[14]  L. A. Solchaga, K. Penick, V. M. Goldberg, A. I. Caplan, and J. F. Welter, “Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells,” Tissue Engineering A, vol. 16, no. 3, pp. 1009–1019, 2010.
[15]  P. Kebriaei, L. Isola, E. Bahceci et al., “Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease,” Biology of Blood and Marrow Transplantation, vol. 15, no. 7, pp. 804–811, 2009.
[16]  T. Mets and G. Verdonk, “Variations in the stromal cell population of human bone marrow during aging,” Mechanisms of Ageing and Development, vol. 15, no. 1, pp. 41–49, 1981.
[17]  M. A. Baxter, R. F. Wynn, S. N. Jowitt, J. E. Wraith, L. J. Fairbairn, and I. Bellantuono, “Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion,” Stem Cells, vol. 22, no. 5, pp. 675–682, 2004.
[18]  A. Banfi, G. Bianchi, R. Notaro, L. Luzzatto, R. Cancedda, and R. Quarto, “Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells,” Tissue Engineering, vol. 8, no. 6, pp. 901–910, 2002.
[19]  T. Mets and G. Verdonk, “In vitro aging of human bone marrow derived stromal cells,” Mechanisms of Ageing and Development, vol. 16, no. 1, pp. 81–89, 1981.
[20]  C. M. Digirolamo, D. Stokes, D. Colter, D. G. Phinney, R. Class, and D. J. Prockop, “Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate,” British Journal of Haematology, vol. 107, no. 2, pp. 275–281, 1999.
[21]  A. Banfi, A. Muraglia, B. Dozin, M. Mastrogiacomo, R. Cancedda, and R. Quarto, “Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy,” Experimental Hematology, vol. 28, no. 6, pp. 707–715, 2000.
[22]  M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.
[23]  B. Johnstone, T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo, “In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells,” Experimental Cell Research, vol. 238, no. 1, pp. 265–272, 1998.
[24]  H. Holtzer, J. Abbott, J. Lash, and S. Holtzer, “The loss of phenotypic traits by differentiated cells in vitro, I. Dedifferentiation of cartilage cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 46, no. 12, pp. 1533–1542, 1960.
[25]  W. K. Manning and W. M. Bonner, “Isolation and culture of chondrocytes from human adult articular cartilage,” Arthritis & Rheumatism, vol. 10, no. 3, pp. 235–239, 1967.
[26]  Y. Kato, M. Iwamoto, T. Koike, F. Suzuki, and Y. Takano, “Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor β and serum factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 24, pp. 9552–9556, 1988.
[27]  R. T. Ballock and A. H. Reddi, “Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium,” Journal of Cell Biology, vol. 126, no. 5, pp. 1311–1318, 1994.
[28]  K. J. Penick, L. A. Solchaga, and J. F. Welter, “High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells,” BioTechniques, vol. 39, no. 5, pp. 687–691, 2005.
[29]  J. F. Welter, L. A. Solchaga, and K. J. Penick, “Simplification of aggregate culture of human mesenchymal stem cells as a chondrogenic screening assay,” BioTechniques, vol. 42, no. 6, pp. 732–737, 2007.
[30]  L. A. Solchaga, K. Penick, J. D. Porter, V. M. Goldberg, A. I. Caplan, and J. F. Welter, “FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells,” Journal of Cellular Physiology, vol. 203, no. 2, pp. 398–409, 2005.
[31]  L. A. Solchaga, J. F. Welter, D. P. Lennon, and A. I. Caplan, “Generation of pluripotent stem cells and their differentiation to the chondrocytic phenotype,” Methods in Molecular Medicine, vol. 100, pp. 53–68, 2004.
[32]  R. Lillie and L. Ashburn, “Supersaturated solutions of fat stains in dilute isopropanol for demonstration of acute fatty degeneration not shown by Herxheimer’s technique,” Archives of Pathology, vol. 36, pp. 432–440, 1943.
[33]  L. G. Luna, Armed Forces Institute of Pathology Manual of Histological Staining Methodsed, McGraw-Hill, New York, NY, USA, 3rd edition, 1968.
[34]  L. Solchaga, K. Penick, and J. Welter, “A “manual” mosaicking approach to generating large, high-resolution digital images of histological sections,” Proceedings of the Royal Microscopical Society, vol. 39, pp. 313–320, 2004.
[35]  C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, pp. 671–675, 2012.
[36]  G. Landini, “Threshold Color”, in: Image J Plugins, 2012, http://www.dentistry.bham.ac.uk/landinig/software/software.html.
[37]  M. S. Ponticiello, R. M. Schinagl, S. Kadiyala, and F. P. Barry, “Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy,” Journal of Biomedical Materials Research, vol. 52, no. 2, pp. 246–255, 2000.
[38]  V. Sottile and K. Seuwen, “A high-capacity for adipogenic differentiation,” Analytical Biochemistry, vol. 293, no. 1, pp. 124–128, 2001.
[39]  E. Lagasse, J. A. Shizuru, N. Uchida, A. Tsukamoto, and I. L. Weissman, “Toward regenerative medicine,” Immunity, vol. 14, no. 4, pp. 425–436, 2001.
[40]  J. J. Minguell, A. Erices, and P. Conget, “Mesenchymal stem cells,” Experimental Biology and Medicine, vol. 226, no. 6, pp. 507–520, 2001.
[41]  M. Galotto, G. Berisso, L. Delfino et al., “Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients,” Experimental Hematology, vol. 27, no. 9, pp. 1460–1466, 1999.
[42]  D. G. Phinney, G. Kopen, W. Righter, S. Webster, N. Tremain, and D. J. Prockop, “Donor variation in the growth properties and osteogenic potential of human marrow stromal cells,” Journal of Cellular Biochemistry, vol. 75, no. 3, pp. 424–436, 1999.
[43]  I. Blazsek, B. Delmas Marsalet, S. Legras, S. Marion, D. Machover, and J. L. Misset, “Large scale recovery and characterization of stromal cell-associated primitive haemopoietic progenitor cells from filter-retained human bone marrow,” Bone Marrow Transplantation, vol. 23, no. 7, pp. 647–657, 1999.
[44]  O. N. Koc, C. Peters, P. Aubourg et al., “Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases,” Experimental Hematology, vol. 27, no. 11, pp. 1675–1681, 1999.
[45]  P. A. Conget and J. J. Minguell, “Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells,” Journal of Cellular Physiology, vol. 181, pp. 67–73, 1999.
[46]  M. F. Pittenger, G. Mbalaviele, M. Black, J. D. Mosca, and D. R. Marshak, “Mesenchymal stem cells,” in Primary Mesenchymal Cells, M. R. Koller, B. O. Palsson, and J. R. W. Masters, Eds., pp. 189–207, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
[47]  H. Sugihara, N. Yonemitsu, S. Miyabara, and K. Yun, “Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties,” Differentiation, vol. 31, no. 1, pp. 42–49, 1986.
[48]  H. H. Zhang, S. Kumar, A. H. Barnett, and M. C. Eggo, “Ceiling culture of mature human adipocytes: use in studies of adipocyte functions,” Journal of Endocrinology, vol. 164, no. 2, pp. 119–128, 2000.
[49]  S. Tsutsumi, A. Shimazu, K. Miyazaki et al., “Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF,” Biochemical and Biophysical Research Communications, vol. 288, no. 2, pp. 413–419, 2001.
[50]  W. Tsuji, T. Inamoto, H. Yamashiro et al., “Adipogenesis induced by human adipose tissue-derived stem cells,” Tissue Engineering A, vol. 15, no. 1, pp. 83–93, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133