Ex vivo expansion of haematopoetic cells by application of specific cytokines is one approach to overcome boundaries in cord blood transplantation due to limited numbers of haematopoetic stem cells. While many protocols describe an effective increase of total cell numbers and the amount of CD34-positive cells, it still remains unclear if and how the procedure actually affects the cells’ properties. In the presented publications, CD34-positive cells were isolated from cord blood and expanded for up to 7 days in media supplemented with stem cell factor (SCF), thrombopoietin (THPO), interleukin 6 (IL-6), and fms-related tyrosine kinase 3 ligand (FLT3lg). At days 3 and 7, expanded cells were harvested and analyzed by flow cytometry and quantitative proteomics. 2970 proteins were identified, whereof proteomic analysis showed 440 proteins significantly changed in abundance during ex vivo expansion. Despite the fact that haematopoetic cells still expressed CD34 on the surface after 3 days, major changes in regard to the protein profile were observed, while further expansion showed less effect on the proteome level. Enrichment analysis of biological processes clearly showed a proteomic change toward a protein biosynthesis phenotype already within the first three days of expression. 1. Introduction Although several groups in preclinical and clinical settings have attempted ex vivo expansion of the cord blood (CB) product in order to increase haematopoetic progenitor and granulocyte numbers and to reduce the duration of posttransplant neutropenia (summarized in [1]), the implementation of protocols applying for instance several cytokines has been complicated by the following facts. (1)CB transplants are frozen in the majority of banks in a single bag. Clinical trials were performed with only a fraction of CB unit expanded ex vivo with the larger remainder infused unmanipulated. Therefore, the expanded product usually could be infused only 10–14 days after transplantation. Alternative approaches focus on the expansion of one CB unit together with a second nonmanipulated unit. (2)Clinical grade growth factors are only available for a limited number of cytokines and are expensive. (3)Moreover, none of the clinical experiences could unequivocally document a clear benefit of infusion of such ex vivo cytokine expanded components. Since cytokine-driven ex vivo expansion of CD34+ cells from CB is being discussed controversially, other ways to improve haematopoetic engraftment time and reconstitution after CB transplantation are being explored including double CB
References
[1]
S. S. Kelly, C. B. S. Sola, M. De Lima, and E. Shpall, “Ex vivo expansion of cord blood,” Bone Marrow Transplantation, vol. 44, no. 10, pp. 673–681, 2009.
[2]
J. E. Wagner and E. Gluckman, “Umbilical cord blood transplantation: the first 20 years,” Seminars in Hematology, vol. 47, no. 1, pp. 3–12, 2010.
[3]
M. N. Fernández, “Improving the outcome of cord blood transplantation: use of mobilized HSC and other cells from third party donors,” British Journal of Haematology, vol. 147, no. 2, pp. 161–176, 2009.
[4]
E. Csaszar, D. C. Kirouac, M. Yu, W. Wang, et al., “Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling,” Cell Stem Cell, vol. 10, no. 2, pp. 218–229, 2012.
[5]
C. Delaney, S. Heimfeld, C. Brashem-Stein, H. Voorhies, R. L. Manger, and I. D. Bernstein, “Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution,” Nature Medicine, vol. 16, no. 2, pp. 232–236, 2010.
[6]
M. Bantscheff, S. Lemeer, M. M. Savitski, and B. Kuster, “Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present,” Analytical and Bioanalytical Chemistry, vol. 404, no. 4, pp. 939–965, 2012.
[7]
C. Zenzmaier, M. Kollroser, B. Gesslbauer, A. Jandrositz, K. H. Preisegger, and A. J. Kungl, “Preliminary 2-D chromatographic investigation of the human stem cell proteome,” Biochemical and Biophysical Research Communications, vol. 310, no. 2, pp. 483–490, 2003.
[8]
C. Zenzmaier, B. Gesslbauer, N. Grobuschek, A. Jandrositz, K. H. Preisegger, and A. J. Kungl, “Proteomic profiling of human stem cells derived from umbilical cord blood,” Biochemical and Biophysical Research Communications, vol. 328, no. 4, pp. 968–972, 2005.
[9]
W. Tao, M. Wang, E. D. Voss et al., “Comparative proteomic analysis of human CD34+ stem/progenitor cells and mature CD15+ myeloid cells,” Stem Cells, vol. 22, no. 6, pp. 1003–1014, 2004.
[10]
F. Liu, J. Lu, H. H. Fan et al., “Insights into human CD34+ hematopoietic stem/progenitor cells through a systematically proteomic survey coupled with transcriptome,” Proteomics, vol. 6, no. 9, pp. 2673–2692, 2006.
[11]
A. D'Alessandro, G. Liumbruno, G. Grazzini, S. Pupella, L. Lombardini, and L. Zolla, “Umbilical cord blood stem cells: towards a proteomic approach,” Journal of Proteomics, vol. 73, no. 3, pp. 468–482, 2010.
[12]
A. D'Alessandro, G. Grazzini, B. Giardina, and L. Zolla, “In silico analyses of proteomic data suggest a role for heat shock proteins in umbilical cord blood hematopoietic stem cells,” Stem Cell Reviews and Reports, vol. 6, no. 4, pp. 532–547, 2010.
[13]
K. A. Neilson, N. A. Ali, S. Muralidharan, et al., “Less label, more free: approaches in label-free quantitative mass spectrometry,” Proteomics, vol. 11, no. 4, pp. 535–553, 2011.
[14]
M. C. Wiener, J. R. Sachs, E. G. Deyanova, and N. A. Yates, “Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures,” Analytical Chemistry, vol. 76, no. 20, pp. 6085–6096, 2004.
[15]
B. Sitek, D. M. Waldera-Lupa, G. Poschmann, H. E. Meyer, and K. Stühler, “Application of label-free proteomics for differential analysis of lung carcinoma cell line A549,” Methods in Molecular Biology, vol. 893, pp. 241–248, 2012.
[16]
G. K?gler, J. Callejas, P. Hakenberg, et al., “Hematopoietic transplant potential of unrelated cord blood: critical issues,” Journal of Hematotherapy, vol. 5, no. 2, pp. 105–116, 1996.
[17]
G. K?gler, T. F. Radke, A. Lefort et al., “Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells,” Experimental Hematology, vol. 33, no. 5, pp. 573–583, 2005.
[18]
M. V. Nesterenko, M. Tilley, and S. J. Upton, “A simple modification of Blum's silver stain method allows for 30 minute detection of proteins in polyacrylamide gels,” Journal of Biochemical and Biophysical Methods, vol. 28, no. 3, pp. 239–242, 1994.
[19]
J. Cox and M. Mann, “MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification,” Nature Biotechnology, vol. 26, no. 12, pp. 1367–1372, 2008.
[20]
C. A. Luber, J. Cox, H. Lauterbach et al., “Quantitative proteomics reveals subset-specific viral recognition in dendritic cells,” Immunity, vol. 32, no. 2, pp. 279–289, 2010.
[21]
L. J. Jensen, M. Kuhn, M. Stark et al., “STRING 8—a global view on proteins and their functional interactions in 630 organisms,” Nucleic Acids Research, vol. 37, no. 1, pp. D412–D416, 2009.