The generation of induced pluripotent stem cells (iPS cells) has pioneered the field of regenerative medicine and developmental biology. They can be generated by overexpression of a defined set of transcription factors in somatic cells derived from easily accessible tissues such as skin or plucked hair or even human urine. In case of applying this tool to patients who are classified into a disease group, it enables the generation of a disease- and patient-specific research platform. iPS cells have proven a significant tool to elucidate pathophysiological mechanisms in various diseases such as diabetes, blood disorders, defined neurological disorders, and genetic liver disease. One of the first successfully modelled human diseases was long QT syndrome, an inherited cardiac channelopathy which causes potentially fatal cardiac arrhythmia. This review summarizes the efforts of reprogramming various types of long QT syndrome and discusses the potential underlying mechanisms and their application. 1. Introduction “Inherited long QT syndrome” comprises a group of channelopathies that cause a delayed repolarization of the heart leading to an increased risk of malignant ventricular tachycardias, in particular torsade de pointes, that imply the risk of a fatal cardiac arrest. Several attempts have been made to estimate the prevalence of long QT syndromes in the past, while older studies quantify the prevalence between 1:20000 and 1:5000. The latest analysis by Schwartz et al. provides evidence for a higher prevalence close to 1:2000 in a Caucasian population [1]. It is assumed that up to 30% of sudden unexpected deaths in infants are caused by different forms of long QT syndromes (LQTS). These data also implicate that most cases of the LQTSs are diagnosed when they become clinically apparent in an individual or his/her family. Subclinical forms of LQT syndrome can become apparent under the influence of various drugs with QT elongation capability [2]. Ion channels represent a large group of pore proteins regulating ion efflux from the inner cell to the extracellular compartment or vice versa, thereby inducing changes in the membrane potential. Activity is mainly regulated either by voltage or by certain ligands. Thereby, a variety of ion currents are regulated in various tissues. Sodium, potassium, and calcium channels are the primary representatives of ion channel families in the human heart. A complex interplay of certain ion fluxes in a defined sequence operates the cardiac action potential. Thus, it is not surprising that slight mutations can disturb the ion
References
[1]
P. J. Schwartz, M. Stramba-Badiale, L. Crotti et al., “Prevalence of the congenital long-QT syndrome,” Circulation, vol. 120, no. 18, pp. 1761–1767, 2009.
[2]
C. A. Martin, G. D. Matthews, and C. L. Huang, “Sudden cardiac death and inherited channelopathy: the basic electrophysiology of the myocyte and myocardium in ion channel disease,” Heart, vol. 98, no. 7, pp. 536–543, 2012.
[3]
A. O. Grant, “Cardiac ion channels,” Circulation, vol. 2, no. 2, pp. 185–194, 2009.
[4]
H. Morita, J. Wu, and D. P. Zipes, “The QT syndromes: long and short,” The Lancet, vol. 372, no. 9640, pp. 750–763, 2008.
[5]
K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007.
[6]
J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007.
[7]
S. Liebau, P. U. Mahaddalkar, H. A. Kestler, A. Illing, T. Seufferlein, and A. Kleger, “A hierarchy in reprogramming capacity in different tissue microenvironments: what we know and what we need to know,” Stem Cells and Development, vol. 22, no. 5, pp. 695–706, 2013.
[8]
L. Linta, M. Stockmann, T. M. Boeckers, A. Kleger, and S. Liebau, “The potential of iPS cells in synucleinopathy research,” Stem Cells and Development, vol. 2012, Article ID 629230, 6 pages, 2012.
[9]
A. Kleger, P. U. Mahaddalkar, S. F. Katz, A. Lechel, J. Y. Joo, K. Loya, et al., “Increased reprogramming capacity of mouse liver progenitor cells, compared with differentiated liver cells, requires the BAF complex,” Gastroenterology, vol. 142, no. 4, pp. 907–917, 2012.
[10]
R. Maehr, S. Chen, M. Snitow et al., “Generation of pluripotent stem cells from patients with type 1 diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 37, pp. 15768–15773, 2009.
[11]
A. Raya, I. Rodríguez-Piz, G. Guenechea et al., “Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells,” Nature, vol. 460, no. 7251, pp. 53–59, 2009.
[12]
S. T. Rashid, S. Corbineau, N. Hannan et al., “Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells,” Journal of Clinical Investigation, vol. 120, no. 9, pp. 3127–3136, 2010.
[13]
G. H. Liu, B. Z. Barkho, S. Ruiz et al., “Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome,” Nature, vol. 472, no. 7342, pp. 221–227, 2011.
[14]
K. J. Brennand, A. Simone, J. Jou, C. Gelboin-Burkhart, N. Tran, S. Sangar, et al., “Modelling schizophrenia using human induced pluripotent stem cells,” Nature, vol. 473, pp. 221–225, 2011.
[15]
I. Itzhaki, L. Maizels, I. Huber, L. Zwi-Dantsis, O. Caspi, A. Winterstern, et al., “Modelling the long QT syndrome with induced pluripotent stem cells,” Nature, vol. 471, no. 7337, pp. 225–229, 2011.
[16]
X. Ge, Y. Ren, O. Bartulos, M. Y. Lee, Z. Yue, K. Y. Kim, et al., “Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells,” Circulation, vol. 126, no. 14, pp. 1695–1704, 2012.
[17]
R. P. Davis, S. Casini, C. W. van den Berg, M. Hoekstra, C. A. Remme, C. Dambrot, et al., “Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease,” Circulation, vol. 125, no. 25, pp. 3079–3091, 2012.
[18]
N. Sun, M. Yazawa, J. Liu, L. Han, V. Sanchez-Freire, O. J. Abilez, et al., “Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy,” Science Translational Medicine, vol. 4, no. 130, Article ID 130ra47, 2012.
[19]
C. B. Jung, A. Moretti, M. Mederos y Schnitzler, L. Iop, U. Storch, M. Bellin, et al., “Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia,” EMBO Molecular Medicine, vol. 4, no. 3, pp. 180–191, 2012.
[20]
M. Yazawa, B. Hsueh, X. Jia et al., “Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome,” Nature, vol. 471, no. 7337, pp. 230–236, 2011.
[21]
C. Mauritz, K. Schwanke, M. Reppel et al., “Generation of functional murine cardiac myocytes from induced pluripotent stem cells,” Circulation, vol. 118, no. 5, pp. 507–517, 2008.
[22]
X. Carvajal-Vergara, A. Sevilla, S. L. Dsouza et al., “Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome,” Nature, vol. 465, no. 7299, pp. 808–812, 2010.
[23]
C. Donger, I. Denjoy, M. Berthet et al., “KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome,” Circulation, vol. 96, no. 9, pp. 2778–2781, 1997.
[24]
W. Shimizu and C. Antzelevitch, “Differential effects of beta-adrenergic agonists and antagonist in LQT1, LQT2 and LQT3 models of the long QT syndrome,” Journal of the American College of Cardiology, vol. 35, no. 3, pp. 778–786, 2000.
[25]
A. Moretti, M. Bellin, A. Welling, C. B. Jung, J. T. Lam, L. Bott-Flugel, et al., “Patient-specific induced pluripotent stem-cell models for long-QT syndrome,” The New England Journal of Medicine, vol. 363, no. 15, pp. 1397–1409, 2010.
[26]
E. Matsa, D. Rajamohan, E. Dick et al., “Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation,” European Heart Journal, vol. 32, no. 8, pp. 952–962, 2011.
[27]
A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkela, et al., “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Disease Models and Mechanisms, vol. 5, no. 2, pp. 220–230, 2012.
[28]
D. Malan, S. Friedrichs, B. K. Fleischmann, and P. Sasse, “Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro,” Circulation Research, vol. 109, no. 8, pp. 841–847, 2011.
[29]
M. E. Curran, I. Splawski, K. W. Timothy, G. M. Vincent, E. D. Green, and M. T. Keating, “A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome,” Cell, vol. 80, no. 5, pp. 795–803, 1995.
[30]
S. G. Priori, C. Napolitano, P. J. Schwartz et al., “Association of long QT syndrome loci and cardiac events among patients treated with β-blockers,” Journal of the American Medical Association, vol. 292, no. 11, pp. 1341–1344, 2004.
[31]
P. J. Schwartz, S. G. Priori, C. Spazzolini et al., “Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias,” Circulation, vol. 103, no. 1, pp. 89–95, 2001.
[32]
T. Noda, W. Shimizu, K. Satomi et al., “Classification and mechanism of Torsade de Pointes initiation in patients with congenital long QT syndrome,” European Heart Journal, vol. 25, no. 23, pp. 2149–2154, 2004.
[33]
T. Noda, H. Takaki, T. Kurita et al., “Gene-specific response of dynamic ventricular repolarization to sympathetic stimulation in LQT1, LQT2 and LQT3 forms of congenital long QT syndrome,” European Heart Journal, vol. 23, no. 12, pp. 975–983, 2002.
[34]
J. N. Johnson, D. J. Tester, J. Perry, B. A. Salisbury, C. R. Reed, and M. J. Ackerman, “Prevalence of early-onset atrial fibrillation in congenital long QT syndrome,” Heart Rhythm, vol. 5, no. 5, pp. 704–709, 2008.
[35]
N. Hofman, A. A. M. Wilde, S. K??b et al., “Diagnostic criteria for congenital long QT syndrome in the era of molecular genetics: do we need a scoring system?” European Heart Journal, vol. 28, no. 5, pp. 575–580, 2007.
[36]
L. Zhang, D. W. Benson, M. Tristani-Firouzi et al., “Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype,” Circulation, vol. 111, no. 21, pp. 2720–2726, 2005.
[37]
A. J. Moss, W. Zareba, W. J. Hall et al., “Effectiveness and limitations of β-blocker therapy in congenital long- QT syndrome,” Circulation, vol. 101, no. 6, pp. 616–623, 2000.
[38]
S. G. Priori, C. Napolitano, P. J. Schwartz, R. Bloise, L. Crotti, and E. Ronchetti, “The elusive link between LQT3 and brugada syndrome: the role of flecainide challenge,” Circulation, vol. 102, no. 9, pp. 945–947, 2000.
[39]
M. L. Marks, S. L. Whisler, C. Clericuzio, and M. Keating, “A new form of long QT syndrome associated with syndactyly,” Journal of the American College of Cardiology, vol. 25, no. 1, pp. 59–64, 1995.
[40]
H. Reichenbach, E. M. Meister, and H. Theile, “The heart-hand syndrome: a new variant of disorders of heart conduction and syndactylia including osseous changes in hands and feet,” Kinderarztliche Praxis, vol. 60, no. 2, pp. 54–56, 1992.
[41]
I. Splawski, K. W. Timothy, L. M. Sharpe et al., “CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism,” Cell, vol. 119, no. 1, pp. 19–31, 2004.
[42]
M. Yazawa and R. E. Dolmetsch, “Modeling timothy syndrome with iPS cells,” Journal of Cardiovascular Translational Research, vol. 6, no. 1, pp. 1–9, 2013.